Answer:
- 18 feet
Step-by-step explanation:
For this case we have that the main function is given by:

We apply the following transformations:
Vertical expansions:
To graph y = a * f (x)
If a> 1, the graph of y = f (x) is expanded vertically by a factor a.
For a = 5 we have:

Vertical translations:
Suppose that k> 0
To graph y = f (x) + k, move the graph of k units up.
For k = 5 we have:

Answer:
The graph of g (x) is the graph of f (x) stretched vertically by a factor of 5 and translated up 5 units.
Answer:
25150
Step-by-step explanation:
First, we have to see that this is an arithmetic sequence... since to get the next element we add 5 to it. (a geometric sequence would be a multiplication, not an addition)
So, we have a, the first term (a = 4), and we have the difference between each term (d = 5), and we want to find the SUM of the first 100 terms.
To do this without spending hours writing them down, we can use this formula:

If we plug in our values, we have:

S = 50 * (8 + 495) = 50 * 503 = 25150
Answer:
See below
Step-by-step explanation:
Remember that quadratic functions are parabolas when graphed. The solutions are where the parabola crosses the x-axis.
1. The vertex of the parabola in f(x) is (0, 9) which is above the x-axis and the parabola opens up. So the parabola does not cross the x-axis. Therefore the solutions are imaginary.
2. The vertex of the parabola in g(x) is (9, 0) which is on the x-axis and parabola opens up. Therefore, there is a double solution.
3. The vertex of the parabola in h(x) is (-1, -9) which is below the x-axis and the parabola opens up. Therefore, there are two real solutions.
I know this is a long explanation, but that is a way of looking at the problem.
Step-by-step explanation:
Xj + Xk/2 = Xm
7 + Xk/2 = 1
to get rid of the bracket, multiply all two sides by the denominator.
2(7 + Xk/2) = 1(2)
7 + Xk = 2
Xk = 2 - 7
Xk = -5
Yj + Yk/2 = Ym
2 + Yk/2 = -2
to get rid of the bracket, multiply all two sides by the denominator.
2(2 + Yk/2) = -2(2)
2 + Yk = -4
Yk = -4 - 2
Yk = -6
Therefore the coordinates of point K is (-5,-6)