1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
9

Would this event be labeled as independent probability or conditional probability?

Mathematics
1 answer:
Katarina [22]3 years ago
6 0

This would be labed as a Conditional probability

You might be interested in
Given the equation y = 3x-5, what is the slope
zzz [600]

Answer:

given the equation y=3x-5 the slope would be 3

Step-by-step explanation:

looking at the equation you can see it is in y=mx+b form. this means that the coefficient next to the x is the slope

5 0
3 years ago
Let D be the smaller cap cut from a solid ball of radius 8 units by a plane 4 units from the center of the sphere. Express the v
natima [27]

Answer:

Step-by-step explanation:

The equation of the sphere, centered a the origin is given by x^2+y^2+z^2 = 64. Then, when z=4, we get

x^2+y^2= 64-16 = 48.

This equation corresponds to a circle of radius 4\sqrt[]{3} in the x-y plane

c) We will use the previous analysis to define the limits in cartesian and polar coordinates. At first, we now that x varies from -4\sqrt[]{3} up to 4\sqrt[]{3}. This is by taking y =0 and seeing the furthest points of x that lay on the circle. Then, we know that y varies from -\sqrt[]{48-x^2} and \sqrt[]{48-x^2}, this is again because y must lie in the interior of the circle we found. Finally, we know that z goes from 4 up to the sphere, that is , z goes from 4 up to \sqrt[]{64-x^2-y^2}

Then, the triple integral that gives us the volume of D in cartesian coordinates is

\int_{-4\sqrt[]{3}}^{4\sqrt[]{3}}\int_{-\sqrt[]{48-x^2}}^{\sqrt[]{48-x^2}} \int_{4}^{\sqrt[]{64-x^2-y^2}} dz dy dx.

b) Recall that the cylindrical  coordinates are given by x=r\cos \theta, y = r\sin \theta,z = z, where r corresponds to the distance of the projection onto the x-y plane to the origin. REcall that x^2+y^2 = r^2. WE will find the new limits for each of the new coordinates. NOte that, we got a previous restriction of a circle, so, since \theta[\tex] is the angle between the projection to the x-y plane and the x axis, in order for us to cover the whole circle, we need that [tex]\theta goes from 0 to 2\pi. Also, note that r goes from the origin up to the border of the circle, where r has a value of 4\sqrt[]{3}. Finally, note that Z goes from the plane z=4 up to the sphere itself, where the restriction is \sqrt[]{64-r^2}. So, the following is the integral that gives the wanted volume

\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} \int_{4}^{\sqrt[]{64-r^2}} rdz dr d\theta. Recall that the r factor appears because it is the jacobian associated to the change of variable from cartesian coordinates to polar coordinates. This guarantees us that the integral has the same value. (The explanation on how to compute the jacobian is beyond the scope of this answer).

a) For the spherical coordinates, recall that z = \rho \cos \phi, y = \rho \sin \phi \sin \theta,  x = \rho \sin \phi \cos \theta. where \phi is the angle of the vector with the z axis, which varies from 0 up to pi. Note that when z=4, that angle is constant over the boundary of the circle we found previously. On that circle. Let us calculate the angle by taking a point on the circle and using the formula of the angle between two vectors. If z=4 and x=0, then y=4\sqrt[]{3} if we take the positive square root of 48. So, let us calculate the angle between the vectora=(0,4\sqrt[]{3},4) and the vector b =(0,0,1) which corresponds to the unit vector over the z axis. Let us use the following formula

\cos \phi = \frac{a\cdot b}{||a||||b||} = \frac{(0,4\sqrt[]{3},4)\cdot (0,0,1)}{8}= \frac{1}{2}

Therefore, over the circle, \phi = \frac{\pi}{3}. Note that rho varies from the plane z=4, up to the sphere, where rho is 8. Since z = \rho \cos \phi, then over the plane we have that \rho = \frac{4}{\cos \phi} Then, the following is the desired integral

\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{3}}\int_{\frac{4}{\cos \phi}}^{8}\rho^2 \sin \phi d\rho d\phi d\theta where the new factor is the jacobian for the spherical coordinates.

d ) Let us use the integral in cylindrical coordinates

\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} \int_{4}^{\sqrt[]{64-r^2}} rdz dr d\theta=\int_{0}^{2\pi}\int_{0}^{4\sqrt[]{3}} r (\sqrt[]{64-r^2}-4) dr d\theta=\int_{0}^{2\pi} d \theta \cdot \int_{0}^{4\sqrt[]{3}}r (\sqrt[]{64-r^2}-4)dr= 2\pi \cdot (-2\left.r^{2}\right|_0^{4\sqrt[]{3}})\int_{0}^{4\sqrt[]{3}}r \sqrt[]{64-r^2} dr

Note that we can split the integral since the inner part does not depend on theta on any way. If we use the substitution u = 64-r^2 then \frac{-du}{2} = r dr, then

=-2\pi \cdot \left.(\frac{1}{3}(64-r^2)^{\frac{3}{2}}+2r^{2})\right|_0^{4\sqrt[]{3}}=\frac{320\pi}{3}

3 0
3 years ago
Solve for j.<br><br> –9j = 6j − 2(5j + 5)<br><br> j =
OleMash [197]

Answer:

-9j=6j-2(5j + 5)

-9j-6j=-2(5j+5)

-15j=-10j -10

-15j+10j=-10

-5j=-10

-5j/-5 =-10/-5

j=2

5 0
3 years ago
Read 2 more answers
Which is an objects mass? A-it’s color B-it’s shape C-how much matter it has D-how much space it takes up
Nookie1986 [14]

Answer: The answer is C.


Step-by-step explanation:


5 0
3 years ago
6.3 + |8.7 + (-6.8)|
igor_vitrenko [27]

Answer:

21.8

Step-by-step explanation:

7 0
4 years ago
Other questions:
  • At the start of the month, Stephen’s savings account had a balance of $1,624. He made a $420 withdrawal each week for four weeks
    5·2 answers
  • Factorize this equation 58²+42²
    15·2 answers
  • Write three equivalent ratios for the given ratio<br>4/3​
    6·1 answer
  • What is -3/2 times (-5 1/4)
    13·1 answer
  • Cos²x + sin^2x/cscx-cot^2x
    6·1 answer
  • Help this should be easy
    10·2 answers
  • Which recursive sequence would produce the sequence 7,-18,32
    12·1 answer
  • Help asap will be giving a brainliest!
    14·1 answer
  • A rocket is launched from a tower. The height of the rocket, y in feet, is related to the time after launch, x in seconds, by th
    13·1 answer
  • How are key features of a linear function identified and interpreted from a table?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!