If we take the perimeter of the park as being equivalent to the distance that Anwar walks, then we can calculate the number of blocks he walks and then multiply this by the width of each block, thus:
Number of blocks walked = 1 + 2 + 2 + 1 + 1 + 1 = 8
Distance walked = 8*300 = 2400 feet
(You could also draw a diagram to help present this in a visual way but it is not necessary)
Answer:
24
Step-by-step explanation:
LP = 15 on one side
LR= 9 on the other side
____________________|____________|
P L R
add them and PR is 24
15+9= 24
Step-by-step explanation:
this isn't much I think so this isn't plus how come everything in March
The greatest common factor is 1
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{}{ h},\stackrel{}{ k})\qquad \qquad radius=\stackrel{}{ r}\\\\ -------------------------------\\\\ (x+1)^2+y^2=36\implies [x-(\stackrel{h}{-1})]^2+[y-\stackrel{k}{0}]^2=\stackrel{r}{6^2}~~~~ \begin{cases} \stackrel{center}{(-1,0)}\\ \stackrel{radius}{6} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%0A%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%0A%5Cqquad%20%0Acenter~~%28%5Cstackrel%7B%7D%7B%20h%7D%2C%5Cstackrel%7B%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20%0Aradius%3D%5Cstackrel%7B%7D%7B%20r%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%28x%2B1%29%5E2%2By%5E2%3D36%5Cimplies%20%5Bx-%28%5Cstackrel%7Bh%7D%7B-1%7D%29%5D%5E2%2B%5By-%5Cstackrel%7Bk%7D%7B0%7D%5D%5E2%3D%5Cstackrel%7Br%7D%7B6%5E2%7D~~~~%0A%5Cbegin%7Bcases%7D%0A%5Cstackrel%7Bcenter%7D%7B%28-1%2C0%29%7D%5C%5C%0A%5Cstackrel%7Bradius%7D%7B6%7D%0A%5Cend%7Bcases%7D)
so, that's the equation of the circle, and that's its center, any point "ON" the circle, namely on its circumference, will have a distance to the center of 6 units, since that's the radius.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{0})\qquad A(\stackrel{x_2}{-1}~,~\stackrel{y_2}{1})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{distance}{d}=\sqrt{[-1-(-1)]^2+(1-0)^2}\implies d=\sqrt{(-1+1)^2+1^2} \\\\\\ d=\sqrt{0+1}\implies d=1](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%0AA%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdistance%7D%7Bd%7D%3D%5Csqrt%7B%5B-1-%28-1%29%5D%5E2%2B%281-0%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-1%2B1%29%5E2%2B1%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B0%2B1%7D%5Cimplies%20d%3D1)
well, the distance from the center to A is 1, namely is "inside the circle".
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{0})\qquad B(\stackrel{x_2}{-1}~,~\stackrel{y_2}{6})\\\\\\ \stackrel{distance}{d}=\sqrt{[-1-(-1)]^2+(6-0)^2}\implies d=\sqrt{(-1+1)^2+6^2} \\\\\\ d=\sqrt{0+36}\implies d=6](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%0AB%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdistance%7D%7Bd%7D%3D%5Csqrt%7B%5B-1-%28-1%29%5D%5E2%2B%286-0%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-1%2B1%29%5E2%2B6%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B0%2B36%7D%5Cimplies%20d%3D6)
notice, the distance to B is exactly 6, and you know what that means.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{0})\qquad C(\stackrel{x_2}{4}~,~\stackrel{y_2}{-8}) \\\\\\ \stackrel{distance}{d}=\sqrt{[4-(-1)]^2+[-8-0]^2}\implies d=\sqrt{(4+1)^2+(-8)^2} \\\\\\ d=\sqrt{25+64}\implies d=\sqrt{89}\implies d\approx 9.43398](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%0AC%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-8%7D%29%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdistance%7D%7Bd%7D%3D%5Csqrt%7B%5B4-%28-1%29%5D%5E2%2B%5B-8-0%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%284%2B1%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B25%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B89%7D%5Cimplies%20d%5Capprox%209.43398)
notice, C is farther than the radius 6, meaning is outside the circle, hiking about on the plane.