1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
3 years ago
11

Please guys help of opt math class 9 trigonometry very hard my head paining help​

Mathematics
1 answer:
enyata [817]3 years ago
8 0

Answer:

ma arko try garxu la yo gardai gara hai

You might be interested in
URGENT NEED HELP CLICK TO SEE
gogolik [260]
35
“Negative times a negative is a positive”
3 0
3 years ago
Read 2 more answers
If a pair of shoes cost $40 and they are on sale for 30% off how much would they be
yulyashka [42]

multiply 40 by 30% to find the discount then subtract

40 * 0.30 = 12

40-12 = 28

they would cost $28

6 0
3 years ago
The graph of an exponential function is given. Which of the following is the correct equation of the function?
katen-ka-za [31]

Answer:

If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).If one of the data points has the form  

(

0

,

a

)

, then a is the initial value. Using a, substitute the second point into the equation  

f

(

x

)

=

a

(

b

)

x

, and solve for b.

If neither of the data points have the form  

(

0

,

a

)

, substitute both points into two equations with the form  

f

(

x

)

=

a

(

b

)

x

. Solve the resulting system of two equations in two unknowns to find a and b.

Using the a and b found in the steps above, write the exponential function in the form  

f

(

x

)

=

a

(

b

)

x

.

EXAMPLE 3: WRITING AN EXPONENTIAL MODEL WHEN THE INITIAL VALUE IS KNOWN

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population was growing exponentially. Write an algebraic function N(t) representing the population N of deer over time t.

SOLUTION

We let our independent variable t be the number of years after 2006. Thus, the information given in the problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute the second point into the equation  

N

(

t

)

=

80

b

t

to find b:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N

(

t

)

=

80

b

t

180

=

80

b

6

Substitute using point  

(

6

,

180

)

.

9

4

=

b

6

Divide and write in lowest terms

.

b

=

(

9

4

)

1

6

Isolate  

b

using properties of exponents

.

b

≈

1.1447

Round to 4 decimal places

.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places for the remainder of this section.

The exponential model for the population of deer is  

N

(

t

)

=

80

(

1.1447

)

t

. (Note that this exponential function models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph below passes through the initial points given in the problem,  

(

0

,

8

0

)

and  

(

6

,

18

0

)

. We can also see that the domain for the function is  

[

0

,

∞

)

, and the range for the function is  

[

80

,

∞

)

.

Graph of the exponential function, N(t) = 80(1.1447)^t, with labeled points at (0, 80) and (6, 180).

Step-by-step explanation:

4 0
3 years ago
Can someone answer this question please answer it correctly if it’s corect I will mark you brainliest
marshall27 [118]

Answer:

5) 27/70

6) 90

Step-by-step explanation:

5) The first step in this problem is to figure out the amount of total spins. To do so, add up all of the numbers in the column "Frequency".

18 + 15 + 27 + 10 = 70.

Now, look at the amount of times the spinner landed on green. This is 27 times. So, the ratio of green spins to total spins is 27:70, or 27 out of 70 spins. Converting this to a fraction, we get the final answer, 27/70.

6) To solve this problem, we have to first do the same steps as the previous problem, but with the color red. There are 70 total spins, and 18 red spins. Therefore, the ratio is 18:70. However, this problem wants the total number of spins to be 350. In other words, 70 needs to become 350. To do this, multiply each side of the ratio by 5. The ratio becomes 90:350. Using this ratio, we can determine that a solid prediction is 90 red spins out of 350 total spins.

6 0
3 years ago
Read 2 more answers
Factor the expression<br> 10x+15y=
gayaneshka [121]
5(2x+3y) is the most it can be factored. You first have to find the greatest common factor and once thats done just try using methods such as the diamond. The only thing it was able to do using the methods was this.
8 0
3 years ago
Other questions:
  • 10 POINTS!!
    12·2 answers
  • What can you conclude about the signs of two integers whos product i a positive and negative
    8·1 answer
  • State the value of the discriminant. Then determine the number of real roots of the equation.
    11·2 answers
  • I need to know the answer ?
    7·1 answer
  • What is the hcf of 150 and 350​
    14·1 answer
  • Suppose Janice has a beginning bank balance of $467. She makes one ATM withdrawal for $30 and writes 4 checks for $16.80, $22.74
    11·1 answer
  • Which quadrilaterals must have at least one pair of congruent sides? Check all that apply.
    5·2 answers
  • Which parallelograms have perpendicular diagonals
    11·1 answer
  • A pet store has 9dog leashes. It has 8 Fewer dog leashes than the dog collars. How many dog collars does the store have?
    8·2 answers
  • Please help , Take your time , <br>​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!