8x=24 which is 3 so x = 3
4y=24 which is 6 so y = 6
(3,0) for x and (0,6) for y
if the diameter is 20, the its radius must be half that or 10.
![\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ A=5\pi \\ r=10 \end{cases}\implies \begin{array}{llll} 5\pi =\cfrac{\theta \pi (10)^2}{360}\implies 5\pi =\cfrac{5\pi \theta }{18} \\\\\\ \cfrac{5\pi }{5\pi }=\cfrac{\theta }{18}\implies 1=\cfrac{\theta }{18}\implies 18=\theta \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20sector%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%5E2%7D%7B360%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3D%5Cstackrel%7Bdegrees%7D%7Bangle%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20A%3D5%5Cpi%20%5C%5C%20r%3D10%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%205%5Cpi%20%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20%2810%29%5E2%7D%7B360%7D%5Cimplies%205%5Cpi%20%3D%5Ccfrac%7B5%5Cpi%20%5Ctheta%20%7D%7B18%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B5%5Cpi%20%7D%7B5%5Cpi%20%7D%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%201%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%2018%3D%5Ctheta%20%5Cend%7Barray%7D)
Answer:
see the attachments for the two solutions
Step-by-step explanation:
When the given angle is opposite the shorter of the given sides, there will generally be two solutions. The exception is the case where the triangle is a right triangle (the ratio of the given sides is equal to the sine of the given angle). If the given angle is opposite the longer of the given sides, there is only one solution.
When a side and its opposite angle are given, as here, the law of sines can be used to solve the triangle(s). When the given angle is included between two given sides, the law of cosines can be used to solve the (one) triangle.
___
Here, the law of sines can be used to solve the triangle:
A = arcsin(a/c·sin(C)) = arcsin(25/24·sin(70°)) = 78.19° or 101.81°
B = 180° -70° -A = 31.81° or 8.19°
b = 24·sin(B)/sin(70°) = 13.46 or 3.64
Answer:
q
Step-by-step explanation: