Step-by-step explanation:
The sum of ages of two friends is 13 years.
The product of their ages is 42.
<em>Let the age of 1st friend and 2nd friend is x, y respectively.</em>
<em>1 st condition= The sum of ages of two friends is 13 y</em><em>r</em><em>s. </em>
i.e x+y = 13........ (I)
<em>2nd condition= The product of their ages is 42.</em>
i.e X*y = 42........(ii)
From equation (I)
X+y = 13
or, X = 13-y........ (iii)
<em>Putting the equation (iii) in equation (ii).</em>
X*y= 42
(13-y) * y = 42
13y - y^2 = 42





Either; y-6 = 0
y = 6
Or;
y-7=0
y = 7
<em>Keeping the value of y as "7" in equation (ii)</em>
x*y = 42
7x = 42
X = 42/7
Therefore, the value of X is 6.
Therefore, either 1st friend is 6 years and 2nd is 7 years.
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>it </u></em><em><u>helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
scale factor= 4.7
Step-by-step explanation:
47/10= 4.7
32.9/7= 4.7
28.2/6= 4.7
To figure out the scale factor for the smallest to the largest triangle, divide the larger number by the smaller number (of the same side).
If you wanted to get the scale factor of the largest to smallest triangle, you would just do the opposite.
ex. 10/47, 7/32.9...
Answer:10 is the area
Step-by-step explanation:
Plug x = 0 into the function
f(x) = x^3 + 2x - 1
f(0) = 0^3 + 2(0) - 1
f(0) = -1
Note how the result is negative. The actual number itself doesn't matter. All we care about is the sign of the result.
Repeat for x = 1
f(x) = x^3 + 2x - 1
f(1) = 1^3 + 2(1) - 1
f(1) = 2
This result is positive.
---------------------------
We found that f(0) = -1 and f(1) = 2. The first output -1 is negative while the second output 2 is positive. Going from negative to positive means that, at some point, we will hit y = 0. We might have multiple instances of this happening, or just one. We don't know for sure. The only thing we do know is that there is at least one root in this interval.
To actually find this root, you'll need to use a graphing calculator because the root is some complicated decimal value. Using a graphing calculator, you should find the root to be approximately 0.4533976515