The answer as a decimal is 1.8666
Hello,



==> 1+r=5==>r=4
3+3r+3r²+3r^3+...+3r^6=3(1+r+r²+...+r^6)=3*(r^7-1)/(r-1)=4^7-1=16383
Answer:
So the answer for this case would be n=2663 rounded up to the nearest integer
Step-by-step explanation:
We have the following info:
margin of error desired
the standard deviation for this case
The margin of error is given by this formula:
(a)
And on this case we have that ME =50 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
The critical value for 99% of confidence interval now can be founded using the normal distribution. The significance is
. And for this case would be
, replacing into formula (b) we got:
So the answer for this case would be n=2663 rounded up to the nearest integer
Answer:
We conclude that the rule for the table in terms of x and y is:
Step-by-step explanation:
The table indicates that there is constant change in the x and y values, meaning the table represents the linear function the graph of which would be a straight line.
We know the slope-intercept form of the line equation
y = mx+b
where m is the slope and b is the y-intercept.
Taking two points
Finding the slope between (-2, -4) and (-1, -1)




We know that the y-intercept can be determined by setting x = 0 and finding the corresponding y-value.
Taking another point (0, 2) from the table.
It means at x = 0, y = 2.
Thus, the y-intercept b = 2
Using the slope-intercept form of the linear line function
y = mx+b
substituting m = 3 and b = 2
y = 3x+2
Therefore, we conclude that the rule for the table in terms of x and y is:
<h2><u>Angles</u></h2>
<h3>If angle 1 is 140°, then find the measure of the other angles.</h3>
- ∠2 = <u>40°</u>
- ∠3 = <u>40°</u>
- ∠4 = <u>140°</u>
- ∠5 = <u>140°</u>
- ∠6 = <u>40°</u>
- ∠7 = <u>40°</u>
- ∠8 = <u>140°</u>
<u>Explanation:</u>
- The relationship between ∠1 and ∠2 are <u>supplementary angles</u>, so when you <u>add up their measurements, it will become 180°</u>. Simply subtract 180 and 140 to get the measure of ∠2. As well as ∠3, they're <u>linear pairs</u>. And they are also <u>supplementary</u>. To determine the measure of ∠6 and ∠7, notice the <u>relationship</u> between ∠2 and ∠6. As you noticed, it is <u>corresponding angles</u>. So they <u>have the same measurement</u>. If <u>∠2 = 40°</u>, then <u>∠6 = 40°</u>. As well as ∠7, because the relationship between ∠6 and ∠7 are <u>vertical pairs</u>. So the angle measurement of ∠7 is also <u>40°</u>.
- Meanwhile, the relationship between ∠1 and ∠4 are <u>vertical pairs</u>. It means they also <u>have the same measurement</u>. So ∠4 = <u>140°</u>. The relationship between ∠1 and ∠5 are <u>corresponding angles</u>, so they also <u>have the same measurement</u>. If <u>∠1 = 140°</u>, then <u>∠5 = 140°</u>. The relationship between ∠1 and ∠8 are <u>alternate exterior angles</u>, and they also <u>have the same measurement</u>. <u>If ∠1 = 140°</u>, then <u>∠8 = 140°</u>.
Wxndy~~