=2 4/5
8/10+2
2+8/10=2 8/10
4/5- -2/1
(4x1)-(-2x5) divided by 5x1
=4- -10 divided by 5
=14/5
=2 4/5
The distance formula is an algebraic expression used to determine the distance between two points with the coordinates (x1, y1) and (x2, y2).
<span><span>D=<span><span>(<span>x2</span>−<span>x1</span><span>)2</span>+(<span>y2</span>−<span>y1</span><span>)2</span></span><span>−−−−−−−−−−−−−−−−−−</span>√</span></span><span>D=<span>(<span>x2</span>−<span>x1</span><span>)2</span>+(<span>y2</span>−<span>y1</span><span>)2</span></span></span></span>
Example
Find the distance between (-1, 1) and (3, 4).
This problem is solved simply by plugging our x- and y-values into the distance formula:
<span><span>D=<span><span>(3−(−1)<span>)2</span>+(4−1<span>)2</span></span><span>−−−−−−−−−−−−−−−−−−</span>√</span>=</span><span>D=<span>(3−(−1)<span>)2</span>+(4−1<span>)2</span></span>=</span></span>
<span><span>=<span><span>16+9</span><span>−−−−−</span>√</span>=<span>25<span>−−</span>√</span>=5</span><span>=<span>16+9</span>=25=5</span></span>
Sometimes you need to find the point that is exactly between two other points. This middle point is called the "midpoint". By definition, a midpoint of a line segment is the point on that line segment that divides the segment in two congruent segments.
If the end points of a line segment is (x1, y1) and (x2, y2) then the midpoint of the line segment has the coordinates:
<span><span>(<span><span><span>x1</span>+<span>x2</span></span>2</span>,<span><span><span>y1</span>+<span>y2</span></span>2</span>)</span><span><span>(<span><span><span>x1</span>+<span>x2</span></span>2</span>,<span><span><span>y1</span>+<span>y2</span></span>2</span>)</span><span>
</span></span></span>
Answer:
90°
Step-by-step explanation:
Interior angles of ALL triangles sum to 180°
The whole large triangle has angles 60 60 60 ( they sum to 180)
that means x = 30
then the small triangle on the right has 60 + 30 + y = 180
meaning y = 90 °
Answer:
Step-by-step explanation:
By using the Pythagorean theorem:
b^2+3^2=5^2
b^2+9=25
b=sqrt (25-9)
b=sqrt(16)
b=4
=> 4^2+7^2=c^2
16+49=c^2
65=c^2
=>c=sqrt(65)
c = (approximately) 8