Dry air adjacent to the cloud is entrained air is drier than the air within a cloud. The evaporation occurs in the cloud which cools the air. The cooling of air increases its density and creates a downdraft.
<h3>How clouds are formed?</h3>
A cloud can be described as a mass of ice crystals or water drops suspended in the atmosphere. Clouds can be formed when the water condenses in the atmosphere. The sky possesses some quantity of water vapours and it is invisible to us.
Clouds can be formed when an area of air gets cooler until the water vapour there condenses to liquid form. At this point, the air gets saturated with water vapours.
A cloud can never be perfectly adiabatic. Therefore, after mixing the environmental air with the clouds, its boundaries will not stay well defined and this process is called entrainment.
Learn more about cloud formation, here:
brainly.com/question/1242352
#SPJ1
Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
The total momentum of the system is equal to 50 Kgm/s.
<u>Given the following data:</u>
To determine the total momentum of the system:
Mathematically, momentum is given by the formula;

<u>For Football player 1:</u>

Momentum 1 = 160 Kgm/s.
<u>For Football player 2:</u>

Momentum 1 = 210 Kgm/s.
Now, we can calculate the total momentum of the system:

Total momentum = 50 Kgm/s.
<u>Note:</u> We subtracted because the football players were moving in opposite directions.
Read more: brainly.com/question/15517471
To solve this problem, it is necessary to apply the concepts related to force described in Newton's second law, so that
F = ma
Where,
m = mass
a = Acceleration (Gravitational acceleration when there is action over the object of the earth)
Torque, as we know, is the force applied at a certain distance, that is,

Where
F= Force
d = Distance
Our values are given as,



Since the system is in equilibrium the difference of the torques is the result of the total Torque applied, that is to say






Therefore the magnitude of the frictional torque at the axle of the pulley if the system remains at rest when the balls are released is 