Answer:
![t=14.678\times 10^{-3}s](https://tex.z-dn.net/?f=t%3D14.678%5Ctimes%2010%5E%7B-3%7Ds)
Explanation:
Given:
Capacitance, C = 85 pF = 85 × 10⁻¹² F
Resistance, R = 75 MΩ = 75×10⁶Ω
Charge in capacitor at any time 't' is given as:
![Q=Q_o(1-e^{-\frac{t}{RC}})](https://tex.z-dn.net/?f=Q%3DQ_o%281-e%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%29)
where,
Q₀ = Maximum charge = CE
E = Initial voltage
t = time
also, Q = CV
V= Final voltage = 90% of E = 0.9E
thus, we have
![C\times 0.9E=CE(1-e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}})](https://tex.z-dn.net/?f=C%5Ctimes%200.9E%3DCE%281-e%5E%7B-%5Cfrac%7Bt%7D%7B75%5Ctimes%2010%5E6%5C%20%5Ctimes%5C%2085%5Ctimes%2010%5E%7B-12%7D%7D%7D%29)
or
![0.9=1-e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}}](https://tex.z-dn.net/?f=0.9%3D1-e%5E%7B-%5Cfrac%7Bt%7D%7B75%5Ctimes%2010%5E6%5C%20%5Ctimes%5C%2085%5Ctimes%2010%5E%7B-12%7D%7D%7D)
or
![e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}}=1-0.9=0.1](https://tex.z-dn.net/?f=e%5E%7B-%5Cfrac%7Bt%7D%7B75%5Ctimes%2010%5E6%5C%20%5Ctimes%5C%2085%5Ctimes%2010%5E%7B-12%7D%7D%7D%3D1-0.9%3D0.1)
taking log both sides, we get
![ln(e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}})=ln(0.1)=ln(\frac{1}{10})](https://tex.z-dn.net/?f=ln%28e%5E%7B-%5Cfrac%7Bt%7D%7B75%5Ctimes%2010%5E6%5C%20%5Ctimes%5C%2085%5Ctimes%2010%5E%7B-12%7D%7D%7D%29%3Dln%280.1%29%3Dln%28%5Cfrac%7B1%7D%7B10%7D%29)
or
![-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}=-ln(10)](https://tex.z-dn.net/?f=-%5Cfrac%7Bt%7D%7B75%5Ctimes%2010%5E6%5C%20%5Ctimes%5C%2085%5Ctimes%2010%5E%7B-12%7D%7D%3D-ln%2810%29)
or
![t=75\times 10^6\ \times\ 85\times 10^{-12}\times ln{10}](https://tex.z-dn.net/?f=t%3D75%5Ctimes%2010%5E6%5C%20%5Ctimes%5C%2085%5Ctimes%2010%5E%7B-12%7D%5Ctimes%20ln%7B10%7D)
or
![t=14.678\times 10^{-3}s](https://tex.z-dn.net/?f=t%3D14.678%5Ctimes%2010%5E%7B-3%7Ds)
Answer:
1000 N
Explanation:
An impulse results in a change of momentum
FΔt = mΔv
F = 0.001 kg(1000 - 0) m/s / 0.001 s = 1000 N
The light will bend when in
Answer:
Calculating Coefficient of friction is 0.229.
Force is 4.5 N that keep the block moving at a constant speed.
Explanation:
We know that speed expression is as
.
Where,
is initial speed, V is final speed, ∆s displacement and a acceleration.
Given that,
=3 m/s, V = 0 m/s, and ∆s = 2 m
Substitute the values in the above formula,
![0=3^{2}-2 \times 2 \times a](https://tex.z-dn.net/?f=0%3D3%5E%7B2%7D-2%20%5Ctimes%202%20%5Ctimes%20a)
0 = 9 - 4a
4a = 9
![a=2.25 \mathrm{m} / \mathrm{s}^{2}](https://tex.z-dn.net/?f=a%3D2.25%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D%5E%7B2%7D)
is the acceleration.
Calculating Coefficient of friction:
![\mathrm{F}=\mathrm{m} \times \mathrm{a}](https://tex.z-dn.net/?f=%5Cmathrm%7BF%7D%3D%5Cmathrm%7Bm%7D%20%5Ctimes%20%5Cmathrm%7Ba%7D)
![\mathrm{F}=\mu \times \mathrm{m} \times \mathrm{g}](https://tex.z-dn.net/?f=%5Cmathrm%7BF%7D%3D%5Cmu%20%5Ctimes%20%5Cmathrm%7Bm%7D%20%5Ctimes%20%5Cmathrm%7Bg%7D)
Compare the above equation
![\mu \times m \times g=m \times a](https://tex.z-dn.net/?f=%5Cmu%20%5Ctimes%20m%20%5Ctimes%20g%3Dm%20%5Ctimes%20a)
Cancel "m" common term in both L.H.S and R.H.S
![\text { Equation becomes, } \mu \times g=a](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Equation%20becomes%2C%20%7D%20%5Cmu%20%5Ctimes%20g%3Da)
![\text { Coefficient of friction } \mu=\frac{a}{g}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Coefficient%20of%20friction%20%7D%20%5Cmu%3D%5Cfrac%7Ba%7D%7Bg%7D)
![\mathrm{g} \text { on earth surface }=9.8 \mathrm{m} / \mathrm{s}^{2}](https://tex.z-dn.net/?f=%5Cmathrm%7Bg%7D%20%5Ctext%20%7B%20on%20earth%20surface%20%7D%3D9.8%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D%5E%7B2%7D)
![\mu=\frac{2.25}{9.8}](https://tex.z-dn.net/?f=%5Cmu%3D%5Cfrac%7B2.25%7D%7B9.8%7D)
![\mu=0.229](https://tex.z-dn.net/?f=%5Cmu%3D0.229)
Hence coefficient of friction is 0.229.
calculating force:
![\text { We know that } \mathrm{F}=\mathrm{m} \times \mathrm{a}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20We%20know%20that%20%7D%20%5Cmathrm%7BF%7D%3D%5Cmathrm%7Bm%7D%20%5Ctimes%20%5Cmathrm%7Ba%7D)
![\mathrm{F}=2 \times 2.25 \quad(\mathrm{m}=2 \mathrm{kg} \text { given })](https://tex.z-dn.net/?f=%5Cmathrm%7BF%7D%3D2%20%5Ctimes%202.25%20%5Cquad%28%5Cmathrm%7Bm%7D%3D2%20%5Cmathrm%7Bkg%7D%20%5Ctext%20%7B%20given%20%7D%29)
F = 4.5 N
Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.