Answer: 1
Step-by-step explanation:
3x + 8x-8= 3
11x-8=3
Then you move the 8 to the other side and change it to a positive.
11x= 11
11x/11 = 11/11
Answer is 1
Answer:
(1,6) & (7,0)
Step-by-step explanation:
y = -x + 7
y = -0.5(x - 3)² + 8
To solve the system, solve these two equations simultaneously
-x + 7 = -0.5(x - 3)² + 8
-x + 7 = -0.5(x² - 6x + 9) + 8
-x + 7 = -0.5x² + 3x - 4.5 + 8
0.5x² - 4x + 3.5 = 0
x² - 8x + 7 = 0
x² - 7x - x + 7 = 0
x(x - 7) - (x - 7) = 0
(x - 1)(x - 7) = 0
x = 1, 7
y = -1 + 7 = 6
y = -7 + 7 = 0
(1,6) (7,0)
Since the system has two distinct solutions, the line and the curve meet at two distinct poibts9: (1,6) & (7,0)
we are given
quadratic equation as
now, we can find b and c from
we can see that coefficient of x^2 is 1
so, we will have to make coefficient x^2 as 1
so, we divide both sides by 3
now, we can simplify it
now, we can compare it with
we get
so, we get order pair as
..............Answer
Answer:
<u>1.56 is greater than 1.29</u>. (Check after the decimal point, 5 is greater than 2, so 1.56 is greater than 1.29)
Answer:
ai) 73000 gal/yr
aii) $730 per year
b) 1000 days
Step-by-step explanation:
ai) The water usage per day is ...
(4 showers/day)(10 min/shower)(5 gal/min) = 200 gal/day
Then the usage per year is ...
(200 gal/day)(365 days/yr) = 73,000 gal/yr
__
aii) The cost of electricity is the cost of heating half the water usage, so is ...
(0.20 kWh/gal)(1/2)(73,000 gal/yr)($0.10/kWh) = $730/yr
__
b) The current daily cost of electricity for heating water is ...
($730/yr)/(365 days/yr) = $2/day
If the cost is cut in half, it will be $1 per day. That means the savings is $1 per day, so it will take 1000 days to recover the $1000 initial cost. (Effectively, the average cost for the first 1000 days is the same as if the water heater had not been replaced.)