1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
3 years ago
7

What is 4,210,000,000 written in scientific notation?

Mathematics
2 answers:
Ray Of Light [21]3 years ago
7 0

Answer:

4.21x10^9

Step-by-step explanation:

The exponent is positive because the number is large.:-)

gogolik [260]3 years ago
4 0
4.21 10^9

Hope this helps *smiles*
You might be interested in
At 88°F, a certain insect chirps at a rate of 64 times per minute, and at 97°F, they chirp 118 times per minute. Write an equati
Allushta [10]

Let " x "  denotes the temperature in degree Fahrenheit .

Let  " y " denotes the chirp rate per minute .

We have given that at 88 degree Fahrenheit , chirp rate is 64 times per minute and at 97 degree Fahrenheit , it is 118 times per minute .

We write this information in coordinate form ( x,y) .

We have ( x₁ ,y₁)  = ( 88 , 64 )  and  ( x₂ , y₂) = ( 97,118) .

                         y₂   - y ₁                     118  -   64                  54

Slope , m  =  ----------------------  =    ---------------------  =     -----------

                          x₂  - x₁                        97   -  88                   9

           Slope , m =  6 .


Equation of line in slope intercept form is

y = m x + b  where  ' m' is slope and ' b ' is intercept .

Plug value of m  , we get

y = 6 x + b .

To find value of b , we put ( 88 , 64 ) in place of x and y .

Put x = 88 and y = 64 , we get

64 = 6 * 88 + b

64  = 528 + b

64 - 528 =  b

- 464 = b

Thus we get b = - 464 .

So the equation become

y = 6 x - 464 .

Equation in slope intercept form representing the situation is

y = 6 x - 464 .

6 0
3 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
From the side view, a gymnastics mat forms a right
Natali [406]

Answer:

its b

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Rearrange equation iterative
faltersainse [42]
Numerical methods; Rearrange your equation; Find the negative root of fact equation. Then you have your answer.
4 0
3 years ago
Choose the correct correspondence of line cd
navik [9.2K]

Answer:

the question is not clear

5 0
3 years ago
Other questions:
  • Two less than the product of a number and three
    11·1 answer
  • 425,339,253 what’s the rule
    12·1 answer
  • From a window 20 feet above the ground, the angle of elevation to the top of a building across
    15·1 answer
  • Which number is a solution to the inequality x+4&lt;7
    10·1 answer
  • Point H is on line segment \overline{GI} GI . Given GI=3x,GI=3x, HI=2,HI=2, and GH=5x-6,GH=5x−6, determine the numerical length
    13·2 answers
  • Equation (in vertex form) for a parabola opening upward, shifted 7 units right and 4 units down
    10·1 answer
  • Find the slope of the line containing the pair of points (-6,4) and (3. - 3) The slope of the line is (Simplify your answer. Typ
    11·1 answer
  • The following graph shows the cost of renting a car based on the miles driven including fees. The solid line represents Enterpri
    8·1 answer
  • 2. Emma knows that her mix of 5 cups of orange juice to 2 cups of ginger
    13·1 answer
  • Jane has already run 6 miles this month. She plans to run an additional 2.5 miles per day.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!