3x-y=6
y=x-4
solve by substitution
3x-x+4=6
2x=2
x=1
Now that you know x, but in in the equation to find y (either equation will work)
y= 1-4
y= -3
now that you have both answers, let's check them.
3(-1) - (-3) =6
yes, it works....
Hopefully this makes sense!
<span>B. Increase total employment compensation </span>
Yes. This equation given:
______________________________
" y = (½)x + 4 " ; in point-slope form; also known as: "slope-intercept form" ; is:
______________________________________
" y = (½)x + 4 " .
______________________________________
In other words, the equation given is ALREADY written in "point-slope form" ; or, "slope-intercept form".
______________________________________
Note: An equation that is written in "point-slope form"
(or, "slope-intercept form"), is written in the format of:
______________________________________
" y = mx + b " ;_________________
in which:_________________
"y" is a single, "stand-alone" variable on the "left-hand side of the equation"; "m" is the coefficient of "x"; also:
"m" is the slope of the line; which is what we want to solve for;
"b" is the "y-intercept"; or more precisely, the value of "x"
(that is; the "x-coordinate") of the point at which "y = 0";
that is, the value of "x" ; or the "x-coordinate" of the point at which
the graph of the equation crosses the "x-axis".
______________________________________
Note that in our given equation, which is written in "point-slope form" (or, "slope-intercept form" — that is: " y = mx + b " ;
_______________________________________
which is: " y = (½)x + 4 " ;
_______________________________________
we have:
_______________________________________
"y" isolated as "stand-alone" variable on the "left-hand side" of the equation;
m = ½ ;
b = 4 .
_______________________________________
Given:
Cards labelled 1, 3, 5, 6, 8 and 9.
A card is drawn and not replaced. Then a second card is drawn at random.
To find:
The probability of drawing 2 even numbers.
Solution:
We have,
Even number cards = 6, 8
Odd numbers cards = 1, 3, 5, 9
Total cards = 1, 3, 5, 6, 8 and 9
Number of even cards = 2
Number of total cards = 6
So, the probability of getting an even card in first draw is:



Now,
Number of remaining even cards = 1
Number of remaining cards = 5
So, the probability of getting an even card in second draw is:


The probability of drawing 2 even numbers is:



Therefore, the probability of drawing 2 even numbers is
. Hence, the correct option is (b).
Answer:
2/3
Step-by-step explanation:
5/6 - (1/8÷3/4)
=5/6 - (1/8 × 4/3)
=5/6 - ( 1/6)
=4/6
=2/3