Answer:
2758 Nm
Step-by-step explanation
Work done usually depends on two things force applied and distance travelled due to applied force. In this current scenario, the force is being applied at an angle so we will have to find a component of force in the direction of the movement.
We usually find component using cos θ.
Here θ is 40°
Now, the modified equation becomes,
Work Done = Force * Distance * Component of force along the direction of distance
∴ Work = 30 N * 120 m * Cos 40°
⇒Work = 30 * 120 * 0.766
⇒Work = 2757.6 Nm
Rounding to the nearest whole number.
∴ The work done by force is 2758 Nm which is option B
Answer:
<h2>x = 5</h2><h2>OB = 36</h2><h2>BE = 54</h2>
Step-by-step explanation:
We know that the medians of the triangle divides in a ratio of 2:1. Therefore we have the equation:
<em>cross multiply</em>
<em>use distributive property a(b + c) = ab + ac</em>

<em>add 9 to both sides</em>
<em>subtract 4x from both sides</em>
<em>divide both sides by 5</em>



Answer: 28
Step-by-step explanation:
add them all of them up then simply subtract 46 from 18 and youll get your final answer which is 28
hope this helps :)
Answer:
(0, -3)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
6x - 5y = 15
x = y + 3
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 6(y + 3) - 5y = 15
- Distribute 6: 6y + 18 - 5y = 15
- Combine like terms: y + 18 = 15
- [Subtraction Property of Equality] Subtract 18 on both sides: y = -3
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 3
- Substitute in <em>y</em>: x = -3 + 3
- Add: x = 0