1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
3 years ago
7

If 4m + n = 7 and n =3, then 4m +3 = 7 what is the property ?

Mathematics
1 answer:
mr Goodwill [35]3 years ago
8 0

Answer:

M equals 1

Step-by-step explanation:

4 x 1 + 3 = 7

You might be interested in
Find the median of this set of data 34 36 30 37 40 30 42 a 37 b 35 c 36 d 30
shusha [124]

Answer:

<h2>36</h2>

Step-by-step explanation:

The median is the value that separates the higher half from the bottom half of the data sample (middle value).

We have

34, 36, 30, 37, 40, 30, 42

Write from the smallest to the largest number

30, 30, 34, 36, 37, 40, 42

3 0
3 years ago
Find the 2th term of the expansion of (a-b)^4.​
vladimir1956 [14]

The second term of the expansion is -4a^3b.

Solution:

Given expression:

(a-b)^4

To find the second term of the expansion.

(a-b)^4

Using Binomial theorem,

(a+b)^{n}=\sum_{i=0}^{n}\left(\begin{array}{l}n \\i\end{array}\right) a^{(n-i)} b^{i}

Here, a = a and b = –b

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

Substitute i = 0, we get

$\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}=1 \cdot \frac{4 !}{0 !(4-0) !} a^{4}=a^4

Substitute i = 1, we get

$\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}=\frac{4 !}{3!} a^{3}(-b)=-4 a^{3} b

Substitute i = 2, we get

$\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}=\frac{12}{2 !} a^{2}(-b)^{2}=6 a^{2} b^{2}

Substitute i = 3, we get

$\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}=\frac{4}{1 !} a(-b)^{3}=-4 a b^{3}

Substitute i = 4, we get

$\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=1 \cdot \frac{(-b)^{4}}{(4-4) !}=b^{4}

Therefore,

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

=\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}+\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}+\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}+\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}+\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}

Hence the second term of the expansion is -4a^3b.

3 0
3 years ago
How to do the problem
trapecia [35]

Step-by-step explanation:

g(0.5) = 2 \\  \\ h(x) = g(x).f(x) \\  \therefore \: h(2) = g(2).f(2) \\  \therefore \: h(2) = 5 \times 2\\ \therefore \: h(2) = 10\\  \\ \\  j(x) = g(x) - f(x) \\  \therefore \: j(4) = g(4) - f(4) \\  \therefore \: j(4) = 9 - 8\\ \therefore \: j(4)  = 1\\  \\  \\

4 0
3 years ago
Find the perimeter of WXYZ. Round to the nearest tenth if necessary.
yanalaym [24]

Answer:

C. 15.6

Step-by-step explanation:

Perimeter of WXYZ = WX + XY + YZ + ZW

Use the distance formula, d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} to calculate the length of each segment.

✔️Distance between W(-1, 1) and X(1, 2):

Let,

W(-1, 1) = (x_1, y_1)

X(1, 2) = (x_2, y_2)

Plug in the values

WX = \sqrt{(1 - (-1))^2 + (2 - 1)^2}

WX = \sqrt{(2)^2 + (1)^2}

WX = \sqrt{4 + 1}

WX = \sqrt{5}

WX = 2.24

✔️Distance between X(1, 2) and Y(2, -4)

Let,

X(1, 2) = (x_1, y_1)

Y(2, -4) = (x_2, y_2)

Plug in the values

XY = \sqrt{(2 - 1)^2 + (-4 - 2)^2}

XY = \sqrt{(1)^2 + (-6)^2}

XY = \sqrt{1 + 36}

XY = \sqrt{37}

XY = 6.08

✔️Distance between Y(2, -4) and Z(-2, -1)

Let,

Y(2, -4) = (x_1, y_1)

Z(-2, -1) = (x_2, y_2)

Plug in the values

YZ = \sqrt{(-2 - 2)^2 + (-1 -(-4))^2}

YZ = \sqrt{(-4)^2 + (3)^2}

YZ = \sqrt{16 + 9}

YZ = \sqrt{25}

YZ = 5

✔️Distance between Z(-2, -1) and W(-1, 1)

Let,

Z(-2, -1) = (x_1, y_1)

W(-1, 1) = (x_2, y_2)

Plug in the values

ZW = \sqrt{(-1 -(-2))^2 + (1 - (-1))^2}

ZW = \sqrt{(1)^2 + (2)^2}

ZW = \sqrt{1 + 4}

ZW = \sqrt{5}

ZW = 2.24

✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56

≈ 15.6

5 0
3 years ago
Are the equations 3x = -9 and 4x = -12 equivalent? Explain
denis23 [38]

4(3x) = 4( - 9) \\ 12x =  - 36
3(4x) = 3( - 12) \\ 12x =  - 36
So the equations are equal
3 0
4 years ago
Other questions:
  • Each block in Ton's neighborhood is 2/3 mile long. If he walks 4 1/2 blocks,how far dose he walk?
    9·1 answer
  • If the area (in square units) of the region under the curve of the function f(x) = 4 on the interval [1, a] is 20 square units,
    9·2 answers
  • What is the answer for number 5
    13·1 answer
  • Determine the value of z in the figure answers: z = 50° z = 45° z = 10° z = 30°
    13·1 answer
  • The lowest price of an MP3 of a song in an online store is $.99. Write an inequality that represents the price p in dollars of a
    8·1 answer
  • At the same day, if 12 o'clock the same, afternoon 2 o'clock plus 2, how much does 8 o'clock owe?
    6·1 answer
  • PLEASE ANSWER FAST!! FIRST CORRECT ANSWER MARKED BRAINLIST. I NEED TO PASS THIS CLASS
    13·2 answers
  • What is the equation of this line?<br><br> A: y=2x-3<br> B: y=1/3x-2<br> C: y=3x-2<br> D: y=1/2x-3
    15·1 answer
  • 30×20×14 Plz answer 14 points
    12·2 answers
  • What is the value of 3(4x+5y) - 2(7x-3y) when x = -2 and y = 3
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!