1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
6

Factor 2x2 + 6x - 108.

Mathematics
2 answers:
aleksandr82 [10.1K]3 years ago
5 0
2(x-6)(x+9)
Answer is B
brilliants [131]3 years ago
4 0

Answer:

b) 2(x-6)(x+9)

Step-by-step explanation:

2x^2+6x-108

Factor out the 2, common factor!!!

2 (x^2 +3x -54)

Now time to factor, what to numbers multiply to get -54 and add to get 3

6,9 look good

what combination???

9,-6 because 9-6 = 3 and 9x-6=-54

so

2(x-6)(x+9)

From what I'm use to you put the 2 back in by dividing the numbers but in this case you dont need to.

You might be interested in
An advertising company designs a campaign to introduce a new product to a metropolitan area of population 3 Million people. Let
Advocard [28]

Answer:

P(t)=3,000,000-3,000,000e^{0.0138t}

Step-by-step explanation:

Since P(t) increases at a rate proportional to the number of people still unaware of the product, we have

P'(t)=K(3,000,000-P(t))

Since no one was aware of the product at the beginning of the campaign and 50% of the people were aware of the product after 50 days of advertising

<em>P(0) = 0 and P(50) = 1,500,000 </em>

We have and ordinary differential equation of first order that we can write

P'(t)+KP(t)= 3,000,000K

The <em>integrating factor </em>is

e^{Kt}

Multiplying both sides of the equation by the integrating factor

e^{Kt}P'(t)+e^{Kt}KP(t)= e^{Kt}3,000,000*K

Hence

(e^{Kt}P(t))'=3,000,000Ke^{Kt}

Integrating both sides

e^{Kt}P(t)=3,000,000K \int e^{Kt}dt +C

e^{Kt}P(t)=3,000,000K(\frac{e^{Kt}}{K})+C

P(t)=3,000,000+Ce^{-Kt}

But P(0) = 0, so C = -3,000,000

and P(50) = 1,500,000

so

e^{-50K}=\frac{1}{2}\Rightarrow K=-\frac{log(0.5)}{50}=0.0138

And the equation that models the number of people (in millions) who become aware of the product by time t is

P(t)=3,000,000-3,000,000e^{0.0138t}

5 0
4 years ago
Find the area of the shaded region​
Setler79 [48]

Answer:

I would help you and say the answer but..

Step-by-step explanation:

I dont know what it is :c

7 0
3 years ago
Find vertex of f(x)=(x+3)(x-5)
astra-53 [7]

The x coordinate of the vertex will be the average of the two zeros, here -3 and 5, so x=(-3+5)/2 = 1, f(1)=(1+3)(1-5) = -16.

Answer: (1, -16)

Let's do it some other ways.  How about completing the square to turn f in to vertex form?

f(x) = (x+3)(x-5) = x² - 2x - 15 = (x² - 2x + 1) - 1 - 15 = (x-1)² - 16

and now we can read off (1, -16) as the vertex.

The other method is the vertex is x= - b/2a =  - (-2)/2(1) = 1.

Three methods, same answer. Good.

4 0
3 years ago
Read 2 more answers
What is (-2.1) to the third power
Fudgin [204]
That would be -9.261.

7 0
3 years ago
Read 2 more answers
*simplify 5|-3+(-7)|=
Lena [83]

Answer:

-2l -3

Step-by-step explanation:

5l -3+ (-7)l

5l -3 -7l

5l -7l -3

-2l -3

6 0
3 years ago
Other questions:
  • Find the percent equivalent of the ratio 64 to 80
    10·2 answers
  • 2. How many factors are represented in the expression (x + 2)(x - 3)?
    9·1 answer
  • Wrens first display box is 6 inches long,9 inches wide,and 4 inches high.what is the volume of the display box
    13·2 answers
  • Find the arc length that subtends a central angle of 2 rad in a circle of radius 2mi
    10·1 answer
  • Which of the following statements are true of a transversal?
    8·2 answers
  • Find an equivalent system of equations for the following system:<br> 2x + 4y = 4<br> -5x + 5y = 5
    11·2 answers
  • 50 points.<br> Please help me write a rational function that fits this graph
    12·1 answer
  • Add 4/5 + 1/4 visually!
    15·1 answer
  • At the annual fair in Springfield, the entrance fee $20 and every ride requires a $3
    9·2 answers
  • Can shella travels 200 miles in 5 hours at this rate how far will she travel in 9 hours by using a proportion
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!