1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
muminat
3 years ago
12

4m exponent 2 + 5m help please

Mathematics
1 answer:
Gnesinka [82]3 years ago
8 0

\huge \boxed{\mathbb{QUESTION} \downarrow}

  • 4m exponent 2 + 5m.

\large \boxed{\mathbb{ANSWER\: WITH\: EXPLANATION} \downarrow}

By.. 4m exponent 2, I'm going to assume that you meant this ⇨ 4m². If so, then here's how you should solve your question. I've included 2 ways of solving the question. You can choose your method. I'd suggest the 2nd one since it's a whole lot easier than the first method.

<h3><u>Method </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

\tt \: 4m  ^ { 2  }  +5m \\

Quadratic polynomial can be factored using the transformation \tt\: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where \tt\:x_{1} and x_{2} are the solutions of the quadratic equation ax²+bx+c=0.

\tt \: 4m^{2}+5m=0

All equations of the form ax²+bx+c=0 can be solved using the quadratic formula: \tt\frac{-b±\sqrt{b^{2}-4ac}}{2a}\\. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

\tt \: m=\frac{-5±\sqrt{5^{2}}}{2\times 4}  \\

Take the square root of 5².

\tt \: m=\frac{-5±5}{2\times 4}  \\

Multiply 2 times 4.

\tt \: m=\frac{-5±5}{8}  \\

Now solve the equation m=\tt\frac{-5±5}{8} when ± is plus. Add -5 to 5.

\tt \: m=\frac{0}{8}  \\  \\  \tt \: m = 0

Now solve the equation m=\tt\frac{-5±5}{8} when ± is minus. Subtract 5 from -5.

\tt \: m=\frac{-10}{8}  \\

Reduce the fraction -10/8 to its lowest terms by extracting and cancelling out 2.

Factor the original expression using \tt\:ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for \tt\:x_{1} \:and \:-\frac{5}{4} \:for\: x_{2}.

\tt \: 4m^{2}+5m=4m\left(m-\left(-\frac{5}{4}\right)\right)  \\

Simplify all of the expressions of the form \tt\:p-\left(-q\right) to p+q.

\tt \: 4m^{2}+5m=4m\left(m+\frac{5}{4}\right)  \\

Add 5/4 to m by finding a common denominator and adding the numerators. Then reduce the fraction to its lowest terms if possible.

\tt \: 4m^{2}+5m=4m\times \left(\frac{4m+5}{4}\right)  \\

Cancel out 4, the greatest common factor in 4 and 4.

\tt \: 4m^{2}+5m=   \boxed{\boxed{\bf \: m\left(4m+5\right) }}

<em><u>Don't</u></em><em><u> </u></em><em><u>worry.</u></em><em><u> </u></em><em><u>If </u></em><em><u>this </u></em><em><u>process</u></em><em><u> </u></em><em><u>seems </u></em><em><u>long </u></em><em><u>&</u></em><em><u> </u></em><em><u>wears </u></em><em><u>you</u></em><em><u> </u></em><em><u>out </u></em><em><u>or </u></em><em><u>if </u></em><em><u>you </u></em><em><u>haven't</u></em><em><u> </u></em><em><u>learned</u></em><em><u> </u></em><em><u>the </u></em><em><u>biquadratic</u></em><em><u> formula</u></em><em><u> </u></em><em><u>yet,</u></em><em><u> </u></em><em><u>you </u></em><em><u>can </u></em><em><u>just </u></em><em><u>use </u></em><em><u>the </u></em><em><u>simple </u></em><em><u>method</u></em><em><u> of</u></em><em><u> </u></em><em><u>factoring </u></em><em><u>out </u></em><em><u>the </u></em><em><u>common</u></em><em><u> </u></em><em><u>term </u></em><em><u>(</u></em><em><u>m)</u></em><em><u>.</u></em><em><u> </u></em><em><u>Here's</u></em><em><u> how</u></em><em><u> you</u></em><em><u> </u></em><em><u>do </u></em><em><u>that </u></em>\downarrow

<h3><u>Method</u><u> </u><u>2</u><u> </u><u>:</u><u>-</u></h3>

\tt \: 4m  ^ { 2  }  +5m

Factor out m.

=  \boxed{ \boxed{ \bf \: m\left(4m+5\right) }}

See, the second method is easier. But, if your question comes for a lot of marks then you might prefer using the first method.

You might be interested in
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
What is the equation of the line that is perpendicular to y =
Olin [163]

Answer:

8989

Step-by-step explanation:

4 0
3 years ago
What is 0.004 divided by 0.05
Korvikt [17]
When u divide 0.004 by 0.05 you will get 0.08 as the quotient.
 

<span />
4 0
3 years ago
1.
ratelena [41]
Amount Financed: $2,650
Finance Charge: $484.69
Number of Payments: 36

(Finance Charge)/(Amount Financed)*100$=($484.69)/($2,650)*100$
(Finance Charge)/(Amount Financed)*100$=(0.1829)*100$
(Finance Charge)/(Amount Financed)*100$=$18.29

In the row of number of Payments 36, we look for:
(Finance Charge)/(Amount Financed)*100$=$18.29, and we see to which annual porcentage rate it corresponds in the first row

Answer: 11.25% 

7 0
3 years ago
Can someone help please
natita [175]

Answer: 13,5

Step-by-step explanation: The decision on a photo

7 0
4 years ago
Other questions:
  • A tablet package from provider x is based on a monthly fee of $60 plus $0.05 per minute of internet use. Provider y charges $45
    7·1 answer
  • I’m like really confused in this subject,I don’t necessarily want the answer but could someone explain to me how to solve proble
    6·1 answer
  • Triangle ABC is transformed to Triangle A′B′C′, as shown below: A coordinate grid is shown from negative 4 to 0 to 4 on both x-
    7·1 answer
  • If you drive 27.54 km to school and then 21.86 km to your<br> friends, how far do you drive?
    6·1 answer
  • Bored.... freeupvote ( and really easy) what is 174 divided by 5 -_-
    14·1 answer
  • What is the slope of the line passing through the points (0, 4) and (−8, −1)?
    9·1 answer
  • Solve for x.<br><br> I need help
    10·1 answer
  • Function or not a function
    10·1 answer
  • What is the largest output achieved by the function? At what x-value is it hit (also will mark Brainlest!!!)
    13·2 answers
  • What is the range of fat grams for the five sandwiches
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!