1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
muminat
3 years ago
12

4m exponent 2 + 5m help please

Mathematics
1 answer:
Gnesinka [82]3 years ago
8 0

\huge \boxed{\mathbb{QUESTION} \downarrow}

  • 4m exponent 2 + 5m.

\large \boxed{\mathbb{ANSWER\: WITH\: EXPLANATION} \downarrow}

By.. 4m exponent 2, I'm going to assume that you meant this ⇨ 4m². If so, then here's how you should solve your question. I've included 2 ways of solving the question. You can choose your method. I'd suggest the 2nd one since it's a whole lot easier than the first method.

<h3><u>Method </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

\tt \: 4m  ^ { 2  }  +5m \\

Quadratic polynomial can be factored using the transformation \tt\: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where \tt\:x_{1} and x_{2} are the solutions of the quadratic equation ax²+bx+c=0.

\tt \: 4m^{2}+5m=0

All equations of the form ax²+bx+c=0 can be solved using the quadratic formula: \tt\frac{-b±\sqrt{b^{2}-4ac}}{2a}\\. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

\tt \: m=\frac{-5±\sqrt{5^{2}}}{2\times 4}  \\

Take the square root of 5².

\tt \: m=\frac{-5±5}{2\times 4}  \\

Multiply 2 times 4.

\tt \: m=\frac{-5±5}{8}  \\

Now solve the equation m=\tt\frac{-5±5}{8} when ± is plus. Add -5 to 5.

\tt \: m=\frac{0}{8}  \\  \\  \tt \: m = 0

Now solve the equation m=\tt\frac{-5±5}{8} when ± is minus. Subtract 5 from -5.

\tt \: m=\frac{-10}{8}  \\

Reduce the fraction -10/8 to its lowest terms by extracting and cancelling out 2.

Factor the original expression using \tt\:ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for \tt\:x_{1} \:and \:-\frac{5}{4} \:for\: x_{2}.

\tt \: 4m^{2}+5m=4m\left(m-\left(-\frac{5}{4}\right)\right)  \\

Simplify all of the expressions of the form \tt\:p-\left(-q\right) to p+q.

\tt \: 4m^{2}+5m=4m\left(m+\frac{5}{4}\right)  \\

Add 5/4 to m by finding a common denominator and adding the numerators. Then reduce the fraction to its lowest terms if possible.

\tt \: 4m^{2}+5m=4m\times \left(\frac{4m+5}{4}\right)  \\

Cancel out 4, the greatest common factor in 4 and 4.

\tt \: 4m^{2}+5m=   \boxed{\boxed{\bf \: m\left(4m+5\right) }}

<em><u>Don't</u></em><em><u> </u></em><em><u>worry.</u></em><em><u> </u></em><em><u>If </u></em><em><u>this </u></em><em><u>process</u></em><em><u> </u></em><em><u>seems </u></em><em><u>long </u></em><em><u>&</u></em><em><u> </u></em><em><u>wears </u></em><em><u>you</u></em><em><u> </u></em><em><u>out </u></em><em><u>or </u></em><em><u>if </u></em><em><u>you </u></em><em><u>haven't</u></em><em><u> </u></em><em><u>learned</u></em><em><u> </u></em><em><u>the </u></em><em><u>biquadratic</u></em><em><u> formula</u></em><em><u> </u></em><em><u>yet,</u></em><em><u> </u></em><em><u>you </u></em><em><u>can </u></em><em><u>just </u></em><em><u>use </u></em><em><u>the </u></em><em><u>simple </u></em><em><u>method</u></em><em><u> of</u></em><em><u> </u></em><em><u>factoring </u></em><em><u>out </u></em><em><u>the </u></em><em><u>common</u></em><em><u> </u></em><em><u>term </u></em><em><u>(</u></em><em><u>m)</u></em><em><u>.</u></em><em><u> </u></em><em><u>Here's</u></em><em><u> how</u></em><em><u> you</u></em><em><u> </u></em><em><u>do </u></em><em><u>that </u></em>\downarrow

<h3><u>Method</u><u> </u><u>2</u><u> </u><u>:</u><u>-</u></h3>

\tt \: 4m  ^ { 2  }  +5m

Factor out m.

=  \boxed{ \boxed{ \bf \: m\left(4m+5\right) }}

See, the second method is easier. But, if your question comes for a lot of marks then you might prefer using the first method.

You might be interested in
You want to help make snow cones at your school fair. Each paper cone has a radius of 4.5 centimeters. The height of one cone is
skad [1K]
Hello there.

You want to help make snow cones at your school fair. Each paper cone has a radius of 4.5 centimeters. The height of one cone is 8.3 centimeters. What is the volume of one cone? Use 3.14
176.01

3 0
3 years ago
I need help, find the area
maksim [4K]

Answer:

a=14, b=58, c=26.5

Step-by-step explanation:

3 0
3 years ago
Where do i graph it
Anuta_ua [19.1K]
(-5,-10)E
(-5,-3)F
(-3,-10)G
7 0
3 years ago
Read 2 more answers
A
SSSSS [86.1K]

Answer: (7 + d) 4 and 4 (7 + d)

Step-by-step explanation:

<em>4 (d + 7) = 4d + 28</em>

<em />

(7 + d) 4 = 28 + 4d (flipped version of 4d + 28)

4 (7 + d) = 28 + 4d (the same)

8 0
3 years ago
A sandbox has an area of 32 square feet , and the length is 4 1\2 feet. What is the width of the sand box?
victus00 [196]
About 7.1 feet for the answer
4 0
4 years ago
Other questions:
  • How to change decimal answer to fraction on calculator ti 84?
    10·1 answer
  • Nathan needs 73.25 yards of cable for a certain job. How long is this in feet and inches?
    5·1 answer
  • If a tank holds 4500 gallons of water, which drains from the bottom of the tank in 50 minutes, then Toricelli's Law gives the vo
    8·1 answer
  • 5 is 50% of what number?
    7·2 answers
  • £78 is split equally between 5 people how many will each person get
    8·2 answers
  • 5x – 2 = 3x + 5 solve for x​
    7·2 answers
  • Harold, the handyman, builds two similar sheds for a farm. The smaller shed is 6 feet tall and weighs 500 pounds. If it takes th
    8·1 answer
  • Someone help plz make sure it’s right! :)
    10·1 answer
  • What number does 4 and 8 share in adding mixed numbers unlike denominators
    10·2 answers
  • A baker needs to have 15.5 pounds of flour on hand for the weekend bread so he looks in the cupboard and finds a bag that has 4.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!