Hello.
C would be your answer.
Hope it helps :)
If you want the answer in point slope form then,
y-y1 = m(x-x1)
y-c = m(x-a)
---------------------------------------
If you want the answer in slope intercept form, then solve for y
y-c = m(x-a)
y-c = mx-ma
y-c+c = mx-ma+c
y = mx-ma+c
y = mx+c-ma
y = mx+(c-ma)
For this answer in slope intercept form the slope is m and the y intercept is c-ma
---------------------------------------
If you want the answer in standard form, then get the variable terms to the left side. Have the constant terms on the right side.
y = mx+c-ma
y-mx = mx+c-ma-mx
-mx+y = c-ma
Optionally you can multiply both sides by -1 to get mx-y = -c+ma but it will depend on your book if this step is carried out or not.
Answer:
The cost of the old ball was $100.
Step-by-step explanation:
The cost of the new ball = $300
The new ball has three times the price of his old ball.
So, let the price of the old ball be = x
As per situation, we get the equation:

Dividing both sides by 3:

=> x = 100
Hence, the cost of the old ball was $100.
Answer:
Follows are the solution to the given point:
Step-by-step explanation:
In point a:
¬∃y∃xP (x, y)
∀x∀y(>P(x,y))
In point b:
¬∀x∃yP (x, y)
∃x∀y ¬P(x,y)
In point c:
¬∃y(Q(y) ∧ ∀x¬R(x, y))
∀y(> Q(y) V ∀ ¬ (¬R(x,y)))
∀y(¬Q(Y)) V ∃xR(x,y) )
In point d:
¬∃y(∃xR(x, y) ∨ ∀xS(x, y))
∀y(∀x>R(x,y))
∃x>s(x,y))
In point e:
¬∃y(∀x∃zT (x, y, z) ∨ ∃x∀zU (x, y, z))
∀y(∃x ∀z)>T(x,y,z)
∀x ∃z> V (x,y,z))
Answer:
x <= -42.5
Step-by-step explanation:
65 - 2x >= 150
-2x >= 150 - 65
-2x >= 85
2x <= -85
x <= -85/2
x <= -42.5