Answer:
e) z (max) = 24
x₁ = x₂ = 0 x₃ = 4
Step-by-step explanation:
a) The problem requires maximizing the total value from sandwich fruits and drink, therefore the objective function is associated to the sum of the values of each value.
We have three variables xi ( x₁, x₂, x₃ ) the values of sandwich, fruits and drink, and we have to maximize such quantities subject to the constraint of size (the capacity of the basket)
b) z = 6*x₁ + 4*x₂ + 6*x₃ Objective Function
Constraint :
basket capacity 17
9*x₁ + 3*x₂ + 4*x₃ ≤ 17
General constraints:
x₁ ≥ 0 x₂ ≥ 0 x₃ ≥ 0 all integers
e) z (max) = 24
x₁ = x₂ = 0 x₃ = 4
NOTE: Without the information about fractional or decimal feasible solution we decided to use integers solution
Answer:
distribute the monomial into the polynomial and be careful of sign errors
Step-by-step explanation:
Answer:
μ = 1 The firm expects that one oil exploration will be successful.
v(x)= 0.9
Step-by-step explanation:
The first step is to define the random variable x as:
x: number of oil explorations being succesful
Then x can be take this values:
x = 0 , x =1 ... x =10
x is a binomially distributed random variable with parameters.
p = 0.1 and n=10
And the mean or the expected value of x is:
μ = E(x) = np
Then μ = 10*0.1 = 1
And the variance of x is:
V(x) = np(1-p)
V(x) = 10(0.1)(1-0.1)= 0.9
Answer:
(0,1/3)
(1,0)
(2,-1/3)
Step-by-step explanation: