“I hate my self I don’t know why”
Answer:
The slope is 5/-2.
Step-by-step explanation:
Slope is y1-y2 over m1-m2 (rise over run). The first ordered pair is -2 (m1) and 11 (y1). We then subtract the second ordered pair (4 (m2) and -4 (y2)) from the first.
11 - (-4) = 11 + 4 = 15
-2 - 4 = -6
Remember, slope is rise over run (y over x), so the slope is 15/-6. Now, we must simplify. 15/-6 = 5/-2
Dean went wrong because he thought that slope was run over rise (x over y). If he had switched the two numbers, his answer would have been correct.
Answer:
huh'?
Step-by-step explanation:
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → C = π - (A + B)
→ sin C = sin(π - (A + B)) cos C = sin(π - (A + B))
→ sin C = sin (A + B) cos C = - cos(A + B)
Use the following Sum to Product Identity:
sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]
cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]
Use the following Double Angle Identity:
sin 2A = 2 sin A · cos A
<u>Proof LHS → RHS</u>
LHS: (sin 2A + sin 2B) + sin 2C




![\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cqquad%20%5Cqquad%20%5Cqquad%202%5Csin%20C%5Ccdot%20%5B%5Ccos%20%28A-B%29%2B%5Ccos%20%28A%2BB%29%5D)


LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C 