Answer:
the pathway will be under-expressed.
- the alpha subunit helps to bind with either GDP or GTP. when the α subunit is bound with GDP, it will be bound to β and γ subunits and thus forms an inactive state for G-protein.
- when the alpha subunit binds with the GTP, it becomes activated and dissociates β and γ subunits.
if G-protein Coupled Receptor is unable from dissociating β and γ subunits, then the pathway will go under expression.
The chemical qualities of the alpha subunit allow it to bind easily to one of two guanine subunits, GDP or GTP. The protein thus has two functional formations. When GDP is bound to the alpha subunit, the alpha subunit remains bound to the beta-gamma subunit to form an inactive trimeric protein.
G-proteins, cAMP, and Ion Channel Opening. The alpha subunit activates adenylate cyclase, in purple, and loses GTP. Adenylate cyclase converts ATP to cyclic AMP, which then activates Protein Kinase, shown in blue. Protein Kinase phosphorylates an ion channel, letting sodium ions rush into the cell.
As a result of the ligand binding to its site on the G-protein-linked receptor, A) the G-protein changes conformation and GTP replaces the GDP on the alpha subunit. ... Inactivation of the alpha subunit occurs when its own phosphorylase activity removes a phosphate from the GTP.
Answer:
I think its that the circulatory system keeps blood flowing and supplies blood to the organs and keeps the heart pumping and the respiratory system keeps you breathing an supplies oxygen to the organs
Explanation:
In the G2 phase the cell is prepping and has reached various checkpoints so that it can divide
Answer - B
Reason - Since the area is in the tropics there will be time to time heavy precipitation, which over time the decomposed nutrients will get washed down into a run off and depleted.
This process is called osmosis whereby water exits the cell through its selectively permeable membrane and into the salt solution to dilute and balance the pressure caused by the concentrated salt solution.