Answer:
The correct answer would be "NADH delivers its electrons to complex I and FADH₂ deliver its electrons to complex II" in cellular respiration.
There are mainly four complexes associated with electron transport chain of cellular respiration.
Complex I or NADH: ubiquinone oxidoreductase is the complex at which NADH is oxidized to form NAD⁺. The free electrons are transported with the help of ubiquinone.
Complex II or succinate dehydrogenase is the complex associated with oxidation of FADH₂ to FAD⁺. It also transports the free electrons with the help of the ubiquinone pool.
Complex III or cytochrome bc1 complex transport free electrons from ubiquinone to the cytochrome C which is a water-soluble electron carrier.
Complex IV or cytochrome c oxidase transport the free electrons to oxygen to form water.
Answer with Explanation:
Let's start first with water on the Earth's moon. This is called "lunar water."
The moon was thought to be barren by scientists long time ago. However, they found out that there are actually <em>water reserves located in the shadowed craters.</em> It is said that the formation of this water was possible with the existence of <u>Oxygen atoms in the lunar rocks and minerals. </u>Due to the <u>solar wind</u> that blew into the place, <u>the Hydrogen ions from the wind combined with the Oxygen in order to form water.</u> So, the water that is found here is relatively fresh.
Let's go to "water on Mars." This is said to be <em>more older than the water on the moon</em> and is actually not that pure for it consists of some mixtures of rocks. It is said that billions of years ago, Mars had an abundant supply of water, but due to climate change, the supply didn't last long. As a result, the planet dried out and only the areas in the polar and mid-latitude regions have water<em> (in the form of ice).</em> This ice melts and refreezes, depending on the temperature. This is an evidence that people may possibly live on Mars.
Answer:
The nitrogen goes through the roots of a plant.
Answer:
in actin homolouge for maintenance of rod-shaped cell
Explanation:
ATP is used as a substrate in signal transduction pathways by kinases that phosphorylate proteins and lipids. The most common ATP-binding proteins, known as kinases, share a small number of common folds; the protein kinases, the largest kinase superfamily, all share common structural features specialized for ATP binding and phosphate transfer.
ATP in complexes with proteins, in general, requires the presence of a divalent cation, almost always magnesium, which binds to the ATP phosphate groups. The presence of magnesium greatly decreases the dissociation constant of ATP from its protein binding partner without affecting the ability of the enzyme to catalyze its reaction once the ATP has bound.The presence of magnesium ions can serve as a mechanism for kinase regulation