The first term, a, is 2. The common ratio, r, is 4. Thus,
a_(n+1) = 2(4)^(n).
Check: What's the first term? Let n=1. Then we get 2(4)^1, or 8. Is that correct? No.
Try this instead:
a_(n) = a_0*4^(n-1). Is this correct? Seeking the first term (n=1), does this formula produce 2? 2*4^0 = 2*1 = 2. YES.
The desired explicit formula is a_(n) = a_0*4^(n-1), where n begins at 1.
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over brainly
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
do it or he will hunt you down and kill u (lets destroy the moderators!!!!!!!!)
we are slowing them down already! good work soilders!
Step-by-step explanation:
Answer:
radical 232
Step-by-step explanation:
14^2+6^2=x^2
196+36= 232
radical 232