Answer:
The heaviest 5% of fruits weigh more than 747.81 grams.
Step-by-step explanation:
We are given that a particular fruit's weights are normally distributed, with a mean of 733 grams and a standard deviation of 9 grams.
Let X = <u><em>weights of the fruits</em></u>
The z-score probability distribution for the normal distribution is given by;
Z =
~ N(0,1)
where,
= population mean weight = 733 grams
= standard deviation = 9 grams
Now, we have to find that heaviest 5% of fruits weigh more than how many grams, that means;
P(X > x) = 0.05 {where x is the required weight}
P(
>
) = 0.05
P(Z >
) = 0.05
In the z table the critical value of z that represents the top 5% of the area is given as 1.645, that means;



x = 747.81 grams
Hence, the heaviest 5% of fruits weigh more than 747.81 grams.
Here’s an explanation! let me know if you need further clarification
Answer:
the answer is 1 1/5
Step-by-step explanation:
When setting up the equation you have the initial fee and the hourly fee. The hourly fee is what must be multiplied by the number of hours which is our unknown
Answer: okay
Step-by-step explanation:
will do
(not use those links) ;)