Answer:
A. -24
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a directly or proportional variation if it can be expressed in the form
or ![y=kx](https://tex.z-dn.net/?f=y%3Dkx)
In this problem we have
For x=-3, y=12
Find the value of the constant of proportionality k
![k=\frac{y}{x}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7By%7D%7Bx%7D)
substitute the given values
![k=\frac{12}{-3}=-4](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B12%7D%7B-3%7D%3D-4)
so
The linear equation is equal to
![y=-4x](https://tex.z-dn.net/?f=y%3D-4x)
what is the value of y when x=6?
substitute the value of x in the linear equation and solve for y
![y=-4(6)=-24](https://tex.z-dn.net/?f=y%3D-4%286%29%3D-24)
Answer:
If your polynomial is x^2+x-30, then your answer is (−5)(+6)
Answer:
Step-by-step explanation:
Given
Length of curve
![L=\int_{2}^{6}\sqrt{1+64x^{-6}}dx](https://tex.z-dn.net/?f=L%3D%5Cint_%7B2%7D%5E%7B6%7D%5Csqrt%7B1%2B64x%5E%7B-6%7D%7Ddx%20)
Length of curve is given by
over interval a to b
comparing two we get
![\frac{\mathrm{d} y}{\mathrm{d} x}=8x^{-3}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7D%20y%7D%7B%5Cmathrm%7Bd%7D%20x%7D%3D8x%5E%7B-3%7D)
![dy=8x^{-3}dx](https://tex.z-dn.net/?f=dy%3D8x%5E%7B-3%7Ddx)
integrating
![\int dy=\int 8x^{-3}dx](https://tex.z-dn.net/?f=%5Cint%20dy%3D%5Cint%208x%5E%7B-3%7Ddx)
![y=-4x^{-2}+C](https://tex.z-dn.net/?f=y%3D-4x%5E%7B-2%7D%2BC)
Curve Passes through (1,2)
![1=-4+C](https://tex.z-dn.net/?f=1%3D-4%2BC)
![C=5](https://tex.z-dn.net/?f=C%3D5)
curve is
![y+\frac{4}{x^2}=5](https://tex.z-dn.net/?f=y%2B%5Cfrac%7B4%7D%7Bx%5E2%7D%3D5)
Answer:
Solution given:
<6+24=180[co- interior angle]
<6=180-24=156°
<6=156°
Answer:
c
Step-by-step explanation: