Answer:

Step-by-step explanation:
Given: E, F, G, H denote the three coordinates of the area fenced
To find: coordinates of point H
Solution:
According to distance formula,
length of side joining points
is equal to 
So,

Perimeter of a figure is the length of its outline.

Put 

This is true.
So, the point
satisfies the equation 
So, point H is
.
<em>The</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>4</em><em>0</em><em> </em><em>cm</em>
<em>pl</em><em>ease</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> </em><em>full</em><em> </em><em>solution</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Answer:

Step-by-step explanation:
So, the function, P(t), represents the number of cells after t hours.
This means that the derivative, P'(t), represents the instantaneous rate of change (in cells per hour) at a certain point t.
C)
So, we are given that the quadratic curve of the trend is the function:

To find the <em>instanteous</em> rate of growth at t=5 hours, we must first differentiate the function. So, differentiate with respect to t:
![\frac{d}{dt}[P(t)]=\frac{d}{dt}[6.10t^2-9.28t+16.43]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%5BP%28t%29%5D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6.10t%5E2-9.28t%2B16.43%5D)
Expand:
![P'(t)=\frac{d}{dt}[6.10t^2]+\frac{d}{dt}[-9.28t]+\frac{d}{dt}[16.43]](https://tex.z-dn.net/?f=P%27%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6.10t%5E2%5D%2B%5Cfrac%7Bd%7D%7Bdt%7D%5B-9.28t%5D%2B%5Cfrac%7Bd%7D%7Bdt%7D%5B16.43%5D)
Move the constant to the front using the constant multiple rule. The derivative of a constant is 0. So:
![P'(t)=6.10\frac{d}{dt}[t^2]-9.28\frac{d}{dt}[t]](https://tex.z-dn.net/?f=P%27%28t%29%3D6.10%5Cfrac%7Bd%7D%7Bdt%7D%5Bt%5E2%5D-9.28%5Cfrac%7Bd%7D%7Bdt%7D%5Bt%5D)
Differentiate. Use the power rule:

Simplify:

So, to find the instantaneous rate of growth at t=5, substitute 5 into our differentiated function:

Multiply:

Subtract:

This tells us that at <em>exactly</em> t=5, the rate of growth is 51.72 cells per hour.
And we're done!
S would also increase if t is being increased