Answer:
The Margin of error = 0.01
Step-by-step explanation:
<u><em>Explanation:-</em></u>
<u><em>step(i):-</em></u>
<em>Given confidence interval for the proportion of vacationers traveling abroad </em>
<em>(0.14,0.16)</em>
<em>The 95% of confidence interval for Population proportion with margin of error is determined by</em>
<em>( p⁻ - M.E , p⁻ + M.E)</em>
<u><em>step(ii):-</em></u>
<em>The margin of error is determined by</em>
<em></em>
<em></em>
<em>Given Confidence interval is ( 0.14 , 0.16 )</em>
Now
(( p⁻ - M.E , p⁻ + M.E) = (0.14,0.16)
Equating
p⁻ - M.E = 0.14 ...(i)
p⁻ + M.E = 0.16 ...(ii)
Solving (i) and (ii) equations , we get
p⁻ - M.E = 0.14
p⁻ + M.E = 0.16
<u> - - - </u>
- 2 M.E = -0.02
M.E = 0.01
The margin of error = 0.01
<u><em>Conclusion:-</em></u>
The margin of error = 0.01