8 2/5 ÷(-2 1/5) = -3.81818181818
Answer:
m/(1 - .8)
Step-by-step explanation:
She read 80% of her emails, which is .8 of the total. So her unread emails would be 100% - 80% = 1 - .8
that means me can be written as:
m = (1 - .8)t
where t is the total
If we solve for t, we get:
t = m/(1 - .8)
Answer:
Simplifying
T = C(9 + AB) * forB
Reorder the terms for easier multiplication:
T = C * forB(9 + AB)
Multiply C * forB
T = forBC(9 + AB)
T = (9 * forBC + AB * forBC)
Reorder the terms:
T = (forAB2C + 9forBC)
T = (forAB2C + 9forBC)
Solving
T = forAB2C + 9forBC
Solving for variable 'T'.
Move all terms containing T to the left, all other terms to the right.
Simplifying
T = forAB2C + 9forBC
Step-by-step explanation:
Simplifying
T = C(9 + AB) * forB
Reorder the terms for easier multiplication:
T = C * forB(9 + AB)
Multiply C * forB
T = forBC(9 + AB)
T = (9 * forBC + AB * forBC)
Reorder the terms:
Answer:
Function 1 is linear
Step-by-step explanation:
A linear is a straight line on the graph.
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The population proportion is 
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as

Generally the standard deviation of the sampling distribution is mathematically evaluated as

=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma } < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D-%200.52%7D%7B0.02106%7D%20%3C%20%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3C%20%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D%20%2B%200.52%7D%7B0.02106%7D%20%29)
Here
![\frac{[\^p - p] - p}{\sigma } = Z (The\ standardized \ value \ of\ (\^ p - p))](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3D%20Z%20%28The%5C%20standardized%20%5C%20%20value%20%5C%20%20of%5C%20%20%28%5C%5E%20p%20-%20p%29%29)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 } < Z < \frac{-0.47 + 0.52}{0.02106 }]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%5Cfrac%7B-0.47%20-%200.52%7D%7B0.02106%20%7D%20%20%3C%20%20Z%20%20%3C%20%5Cfrac%7B-0.47%20%2B%200.52%7D%7B0.02106%20%7D%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%20-2.37%20%3C%20%20Z%20%20%3C%202.37%20%5D)
=> 
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is

and

So
=>
=>
=> 