Answer:
The diagram for the question is missing, but I found an appropriate diagram fo the question:
Proof:
since OC = CD = 297mm Therefore, Δ OCD is an isoscless triangle
∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
∠DOP = 22.5°
∠PDO = 67.5°
∠ADO = 22.5°
∠AOD = 67.5°
Step-by-step explanation:
Given:
AB = CD = 297 mm
AD = BC = 210 mm
BCPO is a square
∴ BC = OP = CP = OB = 210mm
Solving for OC
OCB is a right anlgled triangle
using Pythagoras theorem
(Hypotenuse)² = Sum of square of the other two sides
(OC)² = (OB)² + (BC)²
(OC)² = 210² + 210²
(OC)² = 44100 + 44100
OC = √(88200
OC = 296.98 = 297
OC = 297mm
An isosceless tringle is a triangle that has two equal sides
Therefore for △OCD
CD = OC = 297mm; Hence, △OCD is an isosceless triangle.
The marked angles are not given in the diagram, but I am assuming it is all the angles other than the 90° angles
Since BC = OB = 210mm
∠BCO = ∠BOC
since sum of angles in a triangle = 180°
∠BCO + ∠BOC + 90 = 180
(∠BCO + ∠BOC) = 180 - 90
(∠BCO + ∠BOC) = 90°
since ∠BCO = ∠BOC
∴ ∠BCO = ∠BOC = 90/2 = 45
∴ ∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
For ΔOPD

Note that DP = 297 - 210 = 87mm
∠PDO + ∠DOP + 90 = 180
∠PDO + 22.5 + 90 = 180
∠PDO = 180 - 90 - 22.5
∠PDO = 67.5°
∠ADO = 22.5° (alternate to ∠DOP)
∠AOD = 67.5° (Alternate to ∠PDO)
The domain of a function refers to the interval of x values where the graph is defined. In order for the function to be at least 600, the x values must be between 0 and 20.
The answer is:
Answer:
The quotient of two integers may not always be an integer.
Therefore, I do not agree when a student says that the sum difference, product, and quotient of two are always integers.
Step-by-step explanation:
The student is not largely correct!
The sum, difference, and product of two integers is indeed always an integer.
But, the quotient of two integers may not always be an integer.
- For example, the quotient of integers 4 and 2 will be an integer.
i.e.
4/2 = 2
- But, if we take the quotient of 2 and 3, the result will not be an integer.
i.e.
2/3 = 0.67
Therefore, I do not agree when a student says that the sum difference, product, and quotient of two are always integers.
Answer: y - 10.6 = 9(x-1)
Step-by-step explanation:
Answer:
equation: y = -6x -20
Step-by-step explanation:
pass (0,-20) (-10,40)
y = mx + b
y intercept (b) = -20
slope (m) = (40 - -20) / (-10 - 0) = 60 / -10 = - 6
equation: y = -6x -20