P(BB)=(4/12)(3/11)=12/132=1/11
P(RG)=(3/12)(5/11)=15/132=5/44
Consider the operation is
.
Given:
The augmented matrix below represents a system of equations.
![\left[\left.\begin{matrix}1&0&1\\1&3&-1\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-9\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C1%263%26-1%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-9%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
To find:
Matrix results from the operation
.
Step-by-step explanation:
We have,
![\left[\left.\begin{matrix}1&0&1\\1&3&-1\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-9\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C1%263%26-1%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-9%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
After applying
, we get
![\left[\left.\begin{matrix}1&0&1\\-3(1)&-3(3)&-3(-1)\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-3(-9)\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C-3%281%29%26-3%283%29%26-3%28-1%29%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-3%28-9%29%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
![\left[\left.\begin{matrix}1&0&1\\-3&-9&3\\3&2&0\end{matrix}\right|\begin{matrix}-1\\27\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C-3%26-9%263%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C27%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
Therefore, the correct option is A.
Answer:
see explanation
Step-by-step explanation:
Since the triangles are right use trigonometric ratios to find x and y
A
sin33° =
= 
Multiply both sides by x
x × sin33° = 2.5 ( divide both sides by sin33° )
x =
≈ 4.590
tan33° =
= 
Multiply both sides by y
y × tan33° = 2.5 ( divide both sides by tan33° )
y =
≈ 3.850
B
cos72° =
= 
Multiply both sides by x
x × cos72° = 6 ( divide both sides by cos72° )
x =
≈ 19.416
tan72° = 
Multiply both sides by 6
6 × tan72° = y, thus
y ≈ 18.466
F(-5) = 2(-5)² + 3(-5) + 7
f(-5) = 2(25) - 15 + 7
f(-5) = 50 - 8
f(-5) = 42
First, we need to figure out 10% of fifteen.
So, we multiple 15 by 10% (or 0.1 in simpler terms).
That gives us 1.5, which is our mark-up price.
So, finally we add the markup price to the original price to obtain the selling price.
1.5 + 15 = 16.5
The owner charges $16.50 for 1kg of sugar!