Answer:
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The Pythagorean Theorem,
a
2
+
b
2
=
c
2
, is based on a right triangle where a and b are the lengths of the legs adjacent to the right angle, and c is the length of the hypotenuse. The relationship of sides
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
to side d is the same as that of sides a and b to side c. We use the absolute value symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example,
|
−
3
|
=
3
. ) The symbols
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
indicate that the lengths of the sides of the triangle are positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.
c
2
=
a
2
+
b
2
→
c
=
√
a
2
+
b
2
It follows that the distance formula is given as
d
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
→
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
We do not have to use the absolute value symbols in this definition because any number squared is positive.
A GENERAL NOTE: THE DISTANCE FORMULA
Given endpoints
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
, the distance between two points is given by
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
Step-by-step explanation:
The answer to this question is C.2 I think
12/15÷1/5
when dividing fractions, all you have to do is multiply the first number by the second number's reciprocal
(reciprocal is denominator over numerator)
12/15÷1/5
12/15×5/1
remember when multiplying fractions it's the the two numerators multiplied together over the two denominators multiplied
12/15×5/1
60/15
4
The answer is 4
Coefficients are y and x
Variables are the number with the letters
The terms are the numbers
Step-by-step explanation:
14 < 6×?
6×3=18
therefore anything above 3 multiplied by 6 would be greater in value than 14