Answer:
Given that,
Speed = v
Radius = r
We have to ascertain the precise speed
Utilizing equation of speed
Where, v = velocity/speed
r = radius
= precise speed/ angular velocity
Angular Velocity :
The precise speed is characterized by the speed of turn.
The precise speed is straightforwardly corresponding to the direct speed and contrarily relative to the range of the molecule.
Subsequently, The precise speed is v/r
When the earth in its translation movement has the earth's axis is further from the sun and the energy per unit area is minimal, we have the winter season
The translation is the movement of the earth around the Sun, this movement establishes the duration of the year, also the earth's axis is inclined about 23.5º in relation to the orbit.
A consequence of this inclination of the Earth's axis is that the solar rays reach the surface of the planet with different inclinations, when they arrive more perpendicularly the energy deposited by the surface unit is greater and therefore the temperature increases, this period is called Summer.
When the rays arrive with the greater inclination, the energy deposited per unit area is minimal, which is why the temperature decreases, this period is called Winter.
In the periods when the axis is almost vertical we have an average absorption of energy, these two periods are called Spring and Autumn.
In conclusion, the winter season occurs when the terrestrial axis is furthest from the sun and the energy per unit of area is minimal.
Learn more about the seasons here:
brainly.com/question/20435793
Answer:
Q1: B.2 Q2: B.Waxing crescent Q3: A.Waxing Gibbous
Explanation:
Answer:
4.9 m/s
Explanation:
Since the motion of the ball is a uniformly accelerated motion (constant acceleration), we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the ball in this problem,
u = 0 (it starts from rest)
is the acceleration
s = 3 m is the distance covered
Solving for v,

Answer:
h = 0.362 m
Explanation:
The pressure equation with depth is
P₂ =
+ρ g h
The gauge pressure is
P2 -
= ρ g h
This is the pressure that muscles can create
P₂ -
= 3740 Pa
But still the person needs a small pressure for the transfer of gases, so
P₂ -
= 3740 - 188 = 3552 Pa
This is the maximum pressure difference, where the person can still breathe,
Let's clear the height
h = 3552 / ρ g
h = 3552 / (1000 9.8)
h = 0.362 m
This is the maximum depth where the person can still breathe normally.