ripples on the surface of water.
vibrations in a guitar string.
a Mexican wave in a sports stadium.
electromagnetic waves – eg light waves, microwaves, radio waves.
seismic S-waves.
Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)( - ).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)( - )
= 0.2()
f = = 150
For air (nair = 1):
= (1.5 - 1)( - )
f = = 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.
Answer:
3600joules
Explanation:
formula :W=FS
W=work done (J)
F=force (N)
S=displacement moved in the direction of force (m)
200N×18m
=3600J
Answer: Mabye like an ocean with dolphins swiming/jumping? Or even use the blue as a sky and then put green grass and do foxes or and a phoenix flying with a fox under it?
Explanation:
Just some ideas!
Answer:
Explanation:
As the contour lines have roughly the same spacing but the actual topography is much steeper, the lines on the mountainous map represent a larger vertical spacing than the lines on the gradual hills.