Answer:
Mass
Step-by-step explanation:
"Robin collected data from dropping watermelons of different 'MASS' for the same height"
Answer:
d
Step-by-step explanation:
Step 1: We make the assumption that 498 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$x.
Step 3: From step 1, it follows that $100\%=498$100%=498.
Step 4: In the same vein, $x\%=4$x%=4.
Step 5: This gives us a pair of simple equations:
$100\%=498(1)$100%=498(1).
$x\%=4(2)$x%=4(2).
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{498}{4}$
100%
x%=
498
4
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{4}{498}$
x%
100%=
4
498
$\Rightarrow x=0.8\%$⇒x=0.8%
Therefore, $4$4 is $0.8\%$0.8% of $498$498.
9514 1404 393
Answer:
- Tyler
- 2 hundredths of a mile
Step-by-step explanation:
The graph is a little difficult to read, but we note that there are 6 grid lines between times that are 2 minutes apart. So, each grid line stands for 2/6 = 1/3 minute.
At the 1-mile mark, the graph crosses 1 grid line above 8 minutes, indicating it takes Tyler 8 1/3 minutes to run 1 mile.
Then in 10 minutes, Tyler will run ...
distance = speed · time = 1 mile/(8 1/3 min) · 10 min
= 1/(25/3)·10 = 10·3/25 = 30/25 = 1.2 . . . . miles
__
The equation tells you that Elena runs each mile in 8.5 minutes. To see how far she runs in 10 minutes, we can solve ...
10 = 8.5x
x = 10/8.5 ≈ 1.18 . . . . miles
So, Tyler runs farther in 10 minutes by a distance of ...
1.20 -1.18 = 0.02 . . . . miles
Answer:
9.5 feets
Step-by-step explanation:
Length of drawing = 8 4/9 inches
Scale : 1/3 inch in drawing = 3/8 actual length
Length of drawing / drawing scale
8 4/9 = 76/9 inches
Number of 1/3 inches in total length of drawing :
76/9 ÷ 1/3
76/9 * 3 / 1
(76*3) /(9*1) = 228 /9 = 9 3/9 = 9 1/3
9 1/3 * 3/8 foot
(228 / 9) * (3 /8)
(228/3) * (1/ 8)
228 / 24
= 9.5 feet