Answer:
E
Step-by-step explanation:
1.234 is most definitely a rational number!!
The answer u r looking for is* D, $2.85. Hope I’ve helped ;)
Answer:
-1.5
Step-by-step explanation:
Answer:
Please check the explanation.
Step-by-step explanation:
Finding Domain:
We know that the domain of a function is the set of input or argument values for which the function is real and defined.
From the given graph, it is clear that the starting x-value of the line is x=-2, the closed circle at the starting value of x= -2 means the x-value x=-2 is included.
And the line ends at the x-value x=1 with a closed circle, meaning the ending value of x=1 is also included.
Thus, the domain is:
D: {-2, -1, 0, 1} or D: −2 ≤ x ≤ 1
Finding Range:
We also know that the range of a function is the set of values of the dependent variable for which a function is defined
From the given graph, it is clear that the starting y-value of the line is y=0, the closed circle at the starting value of y = 0 means the y-value y=0 is included.
And the line ends at the y-value y=2 with a closed circle, meaning the ending value of y=2 is also included.
Thus, the range is:
R: {0, 1, 2} or R: 0 ≤ y ≤ 2
Answer:
13.98 in²
Step-by-step explanation:
I don't understand it, either.
Point N is part of a "segment" that above and to the right of chord MO. It is the sum of the areas of 3/4 of the circle and a right triangle with 7-inch sides. The larger segment MO to the upper right of chord MO has an area of about 139.95 in², which <u>is not</u> an answer choice.
__
The remaining segment, to the lower left of chord MO does not seem to have anything to do with point N. However, its area is 13.98 in², which <u>is</u> an answer choice. Therefore, we think the question is about this segment, and we wonder why it is called MNO.
The area of a segment is given by the formula ...
A = (1/2)(θ -sin(θ))r² . . . . . . where θ is the central angle in radians.
Here, we have θ = π/2, r = 7 in, so we can compute the area of the smaller segment MO as ...
A = (1/2)(π/2 -sin(π/2))(7 in)² = 24.5(π/2 -1) in² ≈ 13.9845 in²
Rounded to hundredths, this is ...
≈ 13.98 in²