<u>Answer</u>
x = 20
<u>Explanation</u>
Multiply the entire equation by 2 to get rid of the fraction.
x/2 * 2 = x
-4 * 2 = -8
6 * 2 = 12
Now, we have:
x - 8 = 12
To complete, add 8 to both sides
x = 20
Let L and S represent the weights of large and small boxes, respectively. The problem statement gives rise to two equations:
.. 7L +9S = 273
.. 5L +3S = 141
You can solve these equations various ways. Using "elimination", we can multiply the second equation by 3 and subtract the first equation.
.. 3(5L +3S) -(7L +9S) = 3(141) -(273)
.. 8L = 150
.. L = 150/8 = 18.75
Then we can substitute into either equation to find S. Let's use the second one.
.. 5*18.75 +3S = 141
.. S = (141 -93.75)/3 = 15.75
A large box weighs 18.75 kg; a small box weighs 15.75 kg.
Answer:
5.92
Step-by-step explanation:
16*37=
592
put the decimals in next
Answer:
the first one is correct
it represents 37. which is the ideal weight.
yes you can write another equation
Step-by-step explanation:
the equation is, 44 - 7 = x
All the input values shown on the x-axis