Answer:
= 45/99 (since 45 is the repeating part of the decimal and it contains 2 digits). We can divide both the top and bottom parts by 9 to find that 0.454545… = 45/99 = 5/11.
Step-by-step explanation:
Hope this helps!
Answer:
Option C.
Step-by-step explanation:
The given equations are


We need isolate one of the variables, such that it appears by itself on one side of the equation.
Isolating a variable in two equations is easiest when one of them has a coefficient 1.
In equation 1, coefficient of B is 1. So, we can easily isolate one of the variables.
The equation is

Subtract 3A from both sides.

Multiply both sides by -1.

Therefore, the correct option is C.
a) & b) is yes, c) is no. hope you have a good day
Answer:
Z = 6
Step-by-step explanation:
Z/12 = Cos(60°)
Z/12 = 1/2
The expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Given an integral
.
We are required to express the integral as a limit of Riemann sums.
An integral basically assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinite data.
A Riemann sum is basically a certain kind of approximation of an integral by a finite sum.
Using Riemann sums, we have :
=
∑f(a+iΔx)Δx ,here Δx=(b-a)/n
=f(x)=
⇒Δx=(5-1)/n=4/n
f(a+iΔx)=f(1+4i/n)
f(1+4i/n)=![[n^{2}(n+4i)]/2n^{3}+(n+4i)^{3}](https://tex.z-dn.net/?f=%5Bn%5E%7B2%7D%28n%2B4i%29%5D%2F2n%5E%7B3%7D%2B%28n%2B4i%29%5E%7B3%7D)
∑f(a+iΔx)Δx=
∑
=4
∑
Hence the expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Learn more about integral at brainly.com/question/27419605
#SPJ4