Answer: We can calculate it with the radioactive half life equation
Explanation:
If we already know the initial amount of radioactive material and its half life, we can leave that material for a specific known time and then measure how much of the material is left (since it follows the radioactive deacay) and use the results in the following formula:
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of the radioactive compound
Answer:
47 mW
Explanation:
The average value of the Poynting vector, S = 0.939 W/m² = Intensity of wave, I
S = I S
Also, I = P/A where P = Et, P = power of electromagnetic wave, E = energy of electromagnetic wave in time t and t = time = 1 min = 60 s and A = area = lb since the electromagnetic waves falls on area equal to that of a rectangle.
So, S = Et/A
E = SA/t
= Slb/t
= 0.939 W/m² × 1.5 m × 2.0 m/60 s
= 2.817 W/60 s
= 0.047 W
= 47 mW
So, 47 mW of electromagnetic energy falls on the area in 1.0 minute.
The correct answer among the choices provided is option C. The magnitude of the sum of 20 and 25 might be 12. Inequality triangle equation is used to determine if 12 is right.
<span>12+20 > 25 (correct)
12+25 > 20 (correct)
20+25 > 12 (correct)</span>
Answer:
(a) 34.4°
(b) 49.4 N
Explanation:
(a) From the diagram,
Amgle between the x axis can be calculated as,
cosΘ = adjacent/hypoteneous
cosΘ = 72.1/87.4
cosΘ = 0.8249
Θ = cos⁻¹(0.8249)
Θ = 34.4°.
Hence the angle between the x axis is 34.4°
(b) To find the component along the y axis we make use of pythagoras theorem.
a² = b²+c²................... Equation 1
Where a = 87.4 N, b = 72.1 N, c = y.
Substitute these values into equation 1
87.4² = 72.1² + y²
y² = 87.4²-72.1²
y² = 2440.35
y = √(2440.35)
y = 49.4 N
Answer:
A(i)
The solution to this question is shown on the second uploaded image
A(ii)
The final speed is 
B
The block speed after a distance L is 
Explanation:
From the question
The net force i the x-direction is mathematically represented as

From the the diagram in the second uploaded image we see that

Therefore

Making a the subject

Applying the law of motion

where u = 0 m/s and s =L

=> 
According to Energy conservation law and work theorem
Workdone by F + Workdone by gravity = change in kinetic energy
Mathematically this is given as

Since u = 0 m/s
