Answer:
a) The formula is given by mean
the margin of error. Where the margin of error is the product between the critical value from the normal standard distribution at the confidence level selected and the standard deviation for the sample mean.
b)
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
If the distribution for X is normal or if the sample size is large enough we know that the distribution for the sample mean
is given by:
Part a
The formula is given by mean
the margin of error. Where the margin of error is the product between the critical value from the normal standard distribution at the confidence level selected and the standard deviation for the sample mean.
Part b
The confidence interval for the mean is given by the following formula:
Answer:
We need a sample size of at least 719
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
How large a sample size is required to vary population mean within 0.30 seat of the sample mean with 95% confidence interval?
This is at least n, in which n is found when
. So






Rouding up
We need a sample size of at least 719
Answer:
All rational numbers less than 7
Step-by-step explanation: