Answer:
a = 6
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Trigonometry</u>
[Right Triangles Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is another leg
- c is the hypotenuse<u>
</u>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
<em>a</em> = <em>a</em>
<em>b</em> = 8
<em>c</em> = 10
<u>Step 2: Solve for </u><em><u>a</u></em>
- Substitute in variables [Pythagorean Theorem]: a² + 8² = 10²
- Evaluate exponents: a² + 64 = 100
- [Subtraction Property of Equality] Subtract 64 on both sides: a² = 36
- [Equality Property] Square root both sides: a = 6
Answer:
1
Step-by-step explanation:
Let's solve for a.
t=a+4
Step 1: Flip the equation.
a+4=t
Step 2: Add -4 to both sides.
a + 4 + −4 = t + −4
<u>Answer:</u>
a=t−4
Hello from MrBillDoesMath!
Answer:
Your answer is correct. (You have earned the unofficial title of Genius, Jr. );
Discussion:
Whew! This is a long problem. Let me see what I get and compare it to your answer. First each of the 3 terms contains the sqrt(yz) so let's factor that terms out. You equations equals
sqrt(yz) ( sqrt(108) + 3 sqrt(98) + 2 sqrt(75) ) (A)
Hmm.... let's look at the prime factorizations....
108 = 3 * 36 = 3 * (4*9) = 3 * 2^2* 3^2
98 = 2 * 49 = 2 * 7^2
75 = 3 * 25 = 3 * 5^2
So (A) =
sqrt(yz) ( 6 sqrt(3) + 3*7 sqrt(2) + 2*5 sqrt(3) ) =
sqrt(yz) ( ( 6 + 2*5) sqrt(3) + 21 sqrt(2) ) =
sqrt(yz) ( (6 + 10) sqrt(3) + 21 sqrt(2)) =
sqrt(yz) ( 16 sqrt(3) + 21 sqrt(2) )
Our answers agree!
Thank you,
MrB
Answer: 9
Divide both sides by -5 and then square both sides.