The events are independent. By definition, it means that knowledge about one event does not help you predict the second, and this is the case: even if you knew that you rolled an even number on the first cube, would you be more or less confident about rolling a six on the second? No.
An example in which two events about rolling cubes are dependent could be something like:
Event A: You roll the first cube
Event B: The second cube returns a higher number than the first one.
In this case, knowledge on event A does change you view on event B (and vice versa): if you know that you rolled a 6 on the first cube you don't want to bet on event B, while if you know that you rolled a 1 on the first cube, you're certain that event B will happen.
Conversely, if you know that event B has happened, you are more likely to think that the first cube rolled a small number, and vice versa.
The correct statement about the data collected by Ms. Pearson is that there is no association between a student's absences and the final average grades.
<h3>When do variables have a linear relationship?</h3>
The equation that represents a linear relationship is: a + bx
Where x represents the rate of increase. Thus, for linear equations, the functiion increases by a constant term.
Looking at the table, the average final grade does not increase by a constant term.
To learn more about linear functions, please check: brainly.com/question/26434260
Area = Length X Width
Perimeter = l(2) x W(2)
what are the measures of this rectangle?