1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksju [112]
3 years ago
8

Evaluate the expression 2⋅(3^6⋅3^−5) a) 2/3 b) 3 c) 6 d) 18

Mathematics
2 answers:
frosja888 [35]3 years ago
6 0
D be it’s all the great number for it
PSYCHO15rus [73]3 years ago
5 0
2(729 • 1/243) then 2(3) is 6 so C is the correct answer
You might be interested in
F(x)= -2(x-5)^2+8
geniusboy [140]
I don’t know all of it but....
Axis of symmetry is x=5
Vertex changed to (5,8)
Parabola opens down
4 0
3 years ago
Please help me !!!!!!
cestrela7 [59]

Given:

The set of pair and graphs.

To find:

The domain and range.

Solution:

We know that,

Domain is the set of x-values or input values.

Range is the set of y-values or output values.

(a)

The given set of ordered pairs is

{(-3,3),(5,5),(-3,2),(5,3)}

Here, the x-coordinates are -3, 5, -3, 5.

A set contains distinct values.

Therefore, the domain is {-3,5}.

(b)

The graph is given.

From the given graph the set of ordered pairs is

{(-2,1),(-1,0.5),(-1,3),(0,0),(0,2),(1,0.5),(1,3)(2,1)}

Here, the y-values are 1, 0.5, 3, 0, 2, 0.5, 3, 1.

Therefore, the range is {0, 0.5, 1, 2, 3}.

(c)

The graph is given.

From the given graph the set of ordered pairs is

{(-2,3),(-1,3),(0,1),(2,4)}

Here, the x-values are -2, -1,0, 2.

Therefore, the domain is {-2,-1,0,2}.

4 0
3 years ago
Consider the figure.<br> What is JL?
lisov135 [29]

The answer for the above mentioned problem is JL = 12.5

Step by step explanation:

Given:

JM = 8

KM = 6

To Find:

JL = ?

Formula to be used:

KM^2 = JM x ML

In order to find " JL" we must first find "ML",

KM^2 = JM x ML

         6^2 = 8 x ML

         36 = 8 x ML

         36/8 = ML

         ML = 4.5

Now JL = 4.5+8

             = 12.5

Thus the value of JL = 12.5

3 0
3 years ago
Sort the ratios listed at the right into bins so that equivalent ratios are grouped together:
cestrela7 [59]

Step 1

<u>Find the irreducible fraction in each ratio</u>

<u>case 1)</u>  \frac{40}{64}

Divide by 8 boths numerator and denominator

\frac{40}{64}=\frac{5}{8}

<u>case 2)</u>  \frac{5}{75}

Divide by 5 boths numerator and denominator

\frac{5}{75}=\frac{1}{15}

<u>case 3)</u>  \frac{14}{35}

Divide by 7 boths numerator and denominator

\frac{14}{35}=\frac{2}{5}

<u>case 4)</u>  \frac{24}{64}

Divide by 8 boths numerator and denominator

\frac{24}{64}=\frac{3}{8}

<u>case 5)</u>  \frac{6}{15}

Divide by 3 boths numerator and denominator

\frac{6}{15}=\frac{2}{5}

<u>case 6)</u>  \frac{65}{104}

Divide by 13 boths numerator and denominator

\frac{65}{104}=\frac{5}{8}

<u>case 7)</u>  \frac{66}{176}

Divide by 22 boths numerator and denominator

\frac{66}{176}=\frac{3}{8}

<u>case 8)</u>  \frac{12}{30}

Divide by 6 boths numerator and denominator

\frac{12}{30}=\frac{2}{5}

<u>case 9)</u>  \frac{15}{225}

Divide by 15 boths numerator and denominator

\frac{15}{225}=\frac{1}{15}

<u>case 10)</u>  \frac{6}{16}

Divide by 2 boths numerator and denominator

\frac{6}{16}=\frac{3}{8}

<u>case 11)</u>  \frac{15}{24}

Divide by 3 boths numerator and denominator

\frac{15}{24}=\frac{5}{8}

<u>case 12)</u>  \frac{48}{128}

Divide by 16 boths numerator and denominator

\frac{48}{128}=\frac{3}{8}

Step 2

<u>Sort the ratios into bins</u>

1<u>) First Bin</u>

<u>Ratio=\frac{5}{8} </u>

\frac{40}{64}

\frac{65}{104}

\frac{15}{24}

<u>2) Second Bin </u>

<u>Ratio=\frac{1}{15} </u>

\frac{5}{75}

\frac{15}{225}

<u>3) Third Bin</u>

Ratio=\frac{2}{5}

\frac{14}{35}

\frac{6}{15}

\frac{12}{30}

4<u>) Fourth Bin</u>

<u>Ratio=\frac{3}{8} </u>

\frac{24}{64}

\frac{66}{176}

\frac{6}{16}

\frac{48}{128}

3 0
3 years ago
Read 2 more answers
Use the surface integral in​ Stokes' Theorem to calculate the circulation of the field Bold Upper F equals x squared Bold i plus
Tom [10]

Stokes' theorem says the integral of the curl of \vec F over a surface S with boundary C is equal to the integral of \vec F along the boundary. In other words, the flux of the curl of the vector field is equal to the circulation of the field, such that

\displaystyle\iint_S\nabla\times\vec F\cdot\mathrm d\vec S=\int_C\vec F\cdot\mathrm d\vec r

We have

\vec F(x,y,z)=x^2\,\vec\imath+4x\,\vec\jmath+z^2\,\vec k

\implies\nabla\times\vec F(x,y,z)=4\,\vec k

Parameterize the ellipse S by

\vec s(u,v)=\dfrac{u\cos v}{\sqrt5}\,\vec\imath+\dfrac{u\sqrt5\sin v}4\,\vec\jmath

with 0\le u\le1 and 0\le v\le2\pi.

Take the normal vector to S to be

\dfrac{\partial\vec s}{\partial\vec u}\times\dfrac{\partial\vec s}{\partial\vec v}=\dfrac u4\,\vec k

Then the flux of the curl is

\displaystyle\iint_S4\,\vec k\cdot\dfrac u4\,\vec k\,\mathrm dA=\int_0^{2\pi}\int_0^1u\,\mathrm du\,\mathrm dv=\boxed{\pi}

4 0
3 years ago
Other questions:
  • A high school debate team of 4 is to be chosen from a class of 35. how many possible ways can the team be formed?
    9·1 answer
  • The function f(x) = x^2 is reflected across the x-axis and a stretch factor of 4 is applied to create a second function, g(x). W
    7·1 answer
  • A car is traveling down a highway at a constant speed, described by the equation d=65t , where  d represents the distance, in mi
    14·2 answers
  • What are the length(s) of the sides labeled a and b in the triangle below?
    12·2 answers
  • An item has a listed price of $75. If the sales tax rate is 3%, how much is the sales tax (in dollars)?
    9·1 answer
  • Please show work! Please and thank you!
    7·1 answer
  • Compare and contrast measures of central tendency and measures of variability.
    9·1 answer
  • This table represents the number of pounds, p, a puppy grows after w, weeks.
    11·1 answer
  • Give the location of Berlin as an ordered pair X, Y​
    14·1 answer
  • Rotate the rectangle 90° clockwise about the origin.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!