Answer:
The prove is as given below
Step-by-step explanation:
Suppose there are only finitely many primes of the form 4k + 3, say {p1, . . . , pk}. Let P denote their product.
Suppose k is even. Then P ≅ 3^k (mod 4) = 9^k/2 (mod 4) = 1 (mod 4).
ThenP + 2 ≅3 (mod 4), has to have a prime factor of the form 4k + 3. But pₓ≠P + 2 for all 1 ≤ i ≤ k as pₓ| P and pₓ≠2. This is a contradiction.
Suppose k is odd. Then P ≅ 3^k (mod 4) = 9^k/2 (mod 4) = 1 (mod 4).
Then P + 4 ≅3 (mod 4), has to have a prime factor of the form 4k + 3. But pₓ≠P + 4 for all 1 ≤ i ≤ k as pₓ| P and pₓ≠4. This is a contradiction.
So this indicates that there are infinite prime numbers of the form 4k+3.
Answer:
24 Blocks
Step-by-step explanation:
Hope this helps
Answer:
x>70/11
Step-by-step explanation:
Answer:
80 I THINK, SORRY IF NOT RIGHT
Step-by-step explanation: