1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
13

2. Error Analysis Given the function

Mathematics
1 answer:
Wittaler [7]3 years ago
3 0

Martin's error : The graph of g(x) should be translated 3 units left (not right) from the parent graph.

<u>Concept - Horizontal Translation</u>:

If f(x) is a parent function, then

f(x+h) shifts graph of f(x) by <em>h</em> units to the left.

f(x-h) shifts graph of f(x) by <em>h</em> units to the right.

<u>Given:</u>

Parent function: f(x)=x^2

g(x) = (x + 3)^2

By using concept of horizontal translation,

The graph of g(x) should be translated 3 units left from the parent graph.

i.e. Martin's error : The graph of g(x) should be translated 3 units left (not right) from the parent graph.

Learn more about <u>translation</u>:

brainly.com/question/23871783

brainly.com/question/17151826

You might be interested in
Saul made some extra money last year from a part-time job. He invested part of the money at 2% with four times as much invested
omeli [17]

Answer:

$4000

Step-by-step explanation:

Given that :

Total interest earned = $150

Let amount invested (p) at 2% = x

Amount invested (p) at 3.25% = 4x

Interest = principal * rate * time

At 2%:

(x * 0.02 * 1 ) + (4x * 0.0325 * 1) = 150

0.02x + 0.13x = 150

0.15x = 150

x = 150 / 0.15

x = 1000

Hence,

Amount invested at 2% = x = 1000

Amount invested at 3.25% = 4x = 4(1000) = 4000

6 0
3 years ago
Find the least common multiple of 12 and 8
ASHA 777 [7]

Answer:

24

Step-by-step explanation:

thats the lowest u can get to

7 0
3 years ago
Read 2 more answers
What is the first term, common difference, and 16th term
strojnjashka [21]

Answer:

The 1st term is -67

Step-by-step explanation:

I. When Sn = \frac{n}{2}(a_{1} +  a_{n})

   If  Sn = 124, n = 8 and a_{n} = 98

                124 = 8/2(a + 98)

                124 = 4(a + 98)

                124 = 4a + 392

                124 - 392 = 4a

                -268/4 = a

                -67 = a_{1}

Hope that help :D

7 0
3 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
3 years ago
3. What is the slope of a line that passes<br> through (0,-5) and (8,27)?
Elden [556K]

Answer:

4.

Step-by-step explanation:

Slope = difference in y coordinates / difference in the corresponding x coordinates

(27 - (-5)) / (8 - 0)

= 32 / 8

= 4.

6 0
3 years ago
Read 2 more answers
Other questions:
  • there were 432 animals at the zoo. the zookeeper made 9 different habitats for the animals. if the animals were spread evenly am
    11·2 answers
  • Help quick !!!!!!!!!!!!!!
    12·2 answers
  • HELPPPP WILL GIVE BRAINLIEST TO FIRST RIGHT ANSWER
    8·2 answers
  • 4 1/5 divided by 2/3 express your answer as a mixed number in Simplest form
    14·1 answer
  • Sammy's school drama club performed a play. Student tickets cost $2 each, and adult tickets cost $4.50 each. Altogether, they so
    12·1 answer
  • The current population of Fun City is 21000 people. If the population of the city will double every 51 years then the population
    11·1 answer
  • What is the unit rate for cats per dog if there's 72 cats and 12 dogs
    6·2 answers
  • Write the equation in standard form for the circle with center (0, – 8) and radius 10.
    11·1 answer
  • Options 1,2,3 or4?<br><br> Help!
    8·2 answers
  • There are 713 boxes in the stores room, each having 12 bags of tikis in them. What is the total number if tiki bags are inside t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!