Answer:
23
Step-by-step explanation:
2+2+3+4+5+6 = 23
Probability that a student will play both is 7/30
Step-by-step explanation:
Total students = 30
No. of students who play basketball = 18
Probability that a student will play basketball = 18/30
= 3/5
No. of students who play baseball = 9
Probability that a student will play baseball = 9/30
= 3/10
No. of students who play neither sport = 10
Probability that a student will play neither sport = 10/30
= 1/3
To find :
Probability that a student will play both = p(student will play both)
No.of students who play sport = 30 - 10
= 20
Out of 20 students 18 play basketball and 9 play baseball.
So, some students play both the sports.
No. of students who play both sports = 18 + 9 - 20
= 7
p(student will play both) = 7/30
Probability that a student will play both is 7/30
Answer:have a good day
Step-by-step explanation:
Answer:
The system of equation can be used for determine the number of small and the large dogs groomed are
x + y = 22
43x + 75y = 1234
Step-by-step explanation:
Let us assume that the number of small dogs groomed be x.
Let us assume that the number of lagre dogs groomed be y.
As given
Paws at play made a total of $1,234 grooming 22 dogs.
Than the equation becomes
x + y = 22
Paws at play charges $43 to groom each small dog and $75 for each large dog.
Than the equation becomes
43x + 75y = 1234
Therefore the system of equation can be used for determine the number of small and the large dogs groomed are
x + y = 22
43x + 75y = 1234