Answer:
The correct option is <em>B. Cholesterol is non-polar.</em>
Explanation:
Cholesterol is a non- polar substance and due to this property it is an active part of the cell membrane. Cholesterol molecules help to maintain the stability of a cell. When the temperatures are high, cholesterol stops the cell membrane from crystallization. When the temperatures are low, cholesterol reduces the packaging of molecules of phospholipids. As a result, fluid phase is archived by the cell membrane.
The light reactions use the reactant water from the equation and release the product oxygen.
During a dehydration reaction, two monomer molecules are covalently bonded to each other, with the loss of a water molecule. In this reaction, each monomer contributes part of the water molecule that is released during the reaction. This reaction is repeated as monomers are added to the chain one by one, making a polymer.
Answer:
<h2>Carbon is the chemical backbone of life on Earth. Carbon compounds regulate the Earth’s temperature, make up the food that sustains us, and provide energy that fuels our global economy.
</h2><h2 /><h2>The carbon cycle.
</h2><h2>Most of Earth’s carbon is stored in rocks and sediments. The rest is located in the ocean, atmosphere, and in living organisms. These are the reservoirs through which carbon cycles.
</h2><h2 /><h2>NOAA technicians service a buoy in the Pacific Ocean designed to provide real-time data for ocean, weather and climate prediction.
</h2><h2>NOAA buoys measure carbon dioxide
</h2><h2>NOAA observing buoys validate findings from NASA’s new satellite for measuring carbon dioxide
</h2><h2>Listen to the podcast
</h2><h2>Carbon storage and exchange
</h2><h2>Carbon moves from one storage reservoir to another through a variety of mechanisms. For example, in the food chain, plants move carbon from the atmosphere into the biosphere through photosynthesis. They use energy from the sun to chemically combine carbon dioxide with hydrogen and oxygen from water to create sugar molecules. Animals that eat plants digest the sugar molecules to get energy for their bodies. Respiration, excretion, and decomposition release the carbon back into the atmosphere or soil, continuing the cycle.
</h2><h2 /><h2>The ocean plays a critical role in carbon storage, as it holds about 50 times more carbon than the atmosphere. Two-way carbon exchange can occur quickly between the ocean’s surface waters and the atmosphere, but carbon may be stored for centuries at the deepest ocean depths.
</h2><h2 /><h2>Rocks like limestone and fossil fuels like coal and oil are storage reservoirs that contain carbon from plants and animals that lived millions of years ago. When these organisms died, slow geologic processes trapped their carbon and transformed it into these natural resources. Processes such as erosion release this carbon back into the atmosphere very slowly, while volcanic activity can release it very quickly. Burning fossil fuels in cars or power plants is another way this carbon can be released into the atmospheric reservoir quickly.</h2>
Explanation: