Answer:
k₂ = 4.06 x 10⁻² s⁻¹.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₁ = 5.8 × 10⁻³ s⁻¹, k₂ = ??? , Ea = 33600 J/mol, R = 8.314 J/mol.K, T₁ = 298.0 K, T₂ = 348.0 K.
- ln(k₂/5.8 × 10⁻³ s⁻¹) = (33600 J/mol / 8.314 J/mol.K) [(348.0 K - 298.0 K) / (298.0 K x 348.0 K)] = (4041.37) (4.82 x 10⁻⁴) = 1.9479.
- Taking exponential of both sides:
(k₂/5.8 × 10⁻³ s⁻¹) = 7.014.
∴ k₂ = 4.06 x 10⁻² s⁻¹.
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>
In this case, among the list of components given, the abiotic factors are water, rock, soil, and sun.
<h3>What is an abiotic factor?</h3>
An abiotic factor is a non-living part of an ecosystem that shapes its environment.
Biotic and abiotic factors make up a community via interaction.
Biotic factors are considered living things (having "life") while abiotic factors are simply non-living things.
Hence, in this case, among the list of components given, the abiotic factors are water, rock, soil, sun
Learn more about the abiotic factor here:
brainly.com/question/10111151
#SPJ1