Early diagnosis of childhood cancer is often difficult because the signs and symptoms are SIMILAR TO THOSE OF OTHER CHILDHOOD DISEASES.
Doctors generally find it difficult to diagnosis cancer i children because the accompany symptoms for the disease is quite similar to those of other diseases that children experience. Cancer in children usually occur very rapidly and its diagnosis in most cases typically occur at the late stage.
Answer:
2 molecules of ATP and 2 molecules of NADH
Explanation:
Glycolysis is the first step of cellular respiration (break down of glucose to extract energy) which occurs in the cytoplasm. Glycolysis is a pathway common to all living organisms- prokaryotes and eukaryotes, as it does not require oxygen to occur.
Glycolysis occurs in two major phases (ten steps) requiring 10 enzymes catalyzing each step; the energy-requiring phase and the energy-requiring phase.
In the energy-requiring phase, the starting molecule (glucose) gets rearranged in a series of chemical reactions, and two phosphate groups gets attached to it producing fructose-1,6-bisphosphate which is unstable, This modified sugar then splits in half due to its instability to form two different but inter-convertible phosphate-bearing three-carbon sugars (Dihydroxyacetonephosphate, DHAP and Glyceraldehyde-3-phosphate, G3P). Because the phosphates used in these steps come from 2 ATP molecules, 2 ATP molecules get used up in this phase
All the DHAP molecules get converted to G-3-P in order to enter the next phase.
In the energy-recovering phase, the 3-carbon sugar (G3P) is converted into another three-carbon molecule called pyruvate, through a series of reactions. In these reactions, two ATP and 1 NADH molecules are made. This recovery phase occurs twice (one for each of the two isomeric three-carbon sugars, DHAP and G3P). Hence, a total of 4 ATP and 2 NADH molecules are produced in this phase.
Overall, Glycolysis converts one glucose (six-carbon) molecule to two pyruvate (three-carbon) molecules and a net release of 2 ATP molecules (4 overall - 2 used) and 2 NADH molecules.
The correct answer is: b. It is free to bind to another promoter and begin transcription
Transcription is the first step of gene expression in which DNA molecule is copied (transcribed) into RNA (mRNA) by RNA polymerase. The process of transcription is divided into three phases:
1. Initiation
• RNA polymerase with transcriptional factors bind to gene promoter
• RNA polymerase unwinds DNA double helix (transcription bubble is formed)
2. Elongation
• RNA polymerases adds nucleotides complementary to DNA
3. Termination
• RNA polymerase gets to stop codon (transcribes a sequence of DNA known as a terminator)
• Formed complementary RNA strand is released from DNA-RNA complex.
RNA polymerase is also released and can transcribe some other gene by binding to its promotor. RNA polymerase will transcribe just the genes whose products are needed at a particular moment.
I'm not sure if i fully understood your question but i'll go ahead and answer it .. The DNA molecule has the promotor region which is detected by the transcription factors that are responsible to start transcription ( and hence , unzipping the dna strands )
<span>Lactase enzymes oftentimes come into contact with body temperature entities - 37 C. Ultimately, the enzyme's activity gradually increases with temperature up until about body temperature. Optimum pH for this enzyme is 6. These values provide efficient life of the lactase enzyme.</span>