The number of edges can be calculated from the number of vertices.
- <em>There are 14 vertices for 105 edges</em>
- <em>There are 200 vertices for 19900 edges</em>
The variable N is used to always represent the number of vertices.
So, we represent the edges as:
![E \to Edges](https://tex.z-dn.net/?f=E%20%5Cto%20Edges)
<u />
<u>(a) The value of N for 105 edges</u>
The relationship between N and E is:
![E = \frac{N \times (N - 1)}{2}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7BN%20%5Ctimes%20%28N%20-%201%29%7D%7B2%7D)
Substitute 105 for E
![105 = \frac{N \times (N - 1)}{2}](https://tex.z-dn.net/?f=105%20%3D%20%5Cfrac%7BN%20%5Ctimes%20%28N%20-%201%29%7D%7B2%7D)
Multiply through by 2
![210 = N \times (N - 1)](https://tex.z-dn.net/?f=210%20%3D%20N%20%5Ctimes%20%28N%20%20-%201%29)
![210 = N^2 - N](https://tex.z-dn.net/?f=210%20%3D%20N%5E2%20%20-%20N)
Rewrite as:
![N^2 - N - 210 = 0](https://tex.z-dn.net/?f=N%5E2%20-%20N%20-%20210%20%3D%200)
Expand
![N^2 +14N - 15N - 210 = 0](https://tex.z-dn.net/?f=N%5E2%20%2B14N%20-%2015N%20-%20210%20%3D%200)
Factorize
![N(N +14) - 15(N + 14) = 0](https://tex.z-dn.net/?f=N%28N%20%2B14%29%20-%2015%28N%20%2B%2014%29%20%3D%200)
Factor out N + 14
![(N - 15) (N + 14) = 0](https://tex.z-dn.net/?f=%28N%20-%2015%29%20%28N%20%2B%2014%29%20%3D%200)
Solve for N
or ![N = -14](https://tex.z-dn.net/?f=N%20%3D%20-14)
The number of vertices (N) cannot be negative. So:
![N = 15](https://tex.z-dn.net/?f=N%20%3D%2015)
<u>(b) The value of N for 19900 edges</u>
We have:
![E = \frac{N \times (N - 1)}{2}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7BN%20%5Ctimes%20%28N%20-%201%29%7D%7B2%7D)
Substitute 19900 for E
![19900 = \frac{N \times (N - 1)}{2}](https://tex.z-dn.net/?f=19900%20%3D%20%5Cfrac%7BN%20%5Ctimes%20%28N%20-%201%29%7D%7B2%7D)
Multiply through by 2
![39800 = N \times (N - 1)](https://tex.z-dn.net/?f=39800%20%3D%20N%20%5Ctimes%20%28N%20%20-%201%29)
![39800= N^2 - N](https://tex.z-dn.net/?f=39800%3D%20N%5E2%20%20-%20N)
Rewrite as:
![N^2 - N - 39800= 0](https://tex.z-dn.net/?f=N%5E2%20-%20N%20-%2039800%3D%200)
Expand
![N^2 +199N - 200N - 39800= 0](https://tex.z-dn.net/?f=N%5E2%20%2B199N%20-%20200N%20-%2039800%3D%200)
Factorize
![N(N +199) - 200(N + 199) = 0](https://tex.z-dn.net/?f=N%28N%20%2B199%29%20-%20200%28N%20%2B%20199%29%20%3D%200)
Factor out N + 199
![(N + 199) (N - 200) = 0](https://tex.z-dn.net/?f=%28N%20%2B%20199%29%20%28N%20-%20200%29%20%3D%200)
Solve for N
or ![N = -199](https://tex.z-dn.net/?f=N%20%3D%20-199)
The number of vertices (N) cannot be negative. So:
![N = 200](https://tex.z-dn.net/?f=N%20%3D%20200)
<em>Hence, there are 200 vertices for 19900 edges</em>
Read more about vertices and edges at:
brainly.com/question/22118318