Answer:
Step-by-step explanation:
13+p/3=-4
P/3=-4-13
p=3(-4-13)
p=-13-39
p=-52
The factored form of the polynomial function is y(x) = (x + 3)²(x - 4)(x - 2)
<h3>How to determine the factored form?</h3>
The given parameters are:
- Leading coefficient, a = 1
- Zeros = -3, -3, 4, and 2.
Rewrite the zeros as:
x = -3, x = -3, x = 4 and x = 2
Set the zeros to 0
x + 3 = 0, x + 3 = 0, x - 4 = 0 and x - 2 = 0
Multiply the zeros
(x + 3) * (x + 3) * (x - 4) *(x - 2) = 0
Express as a function
y(x) = a(x + 3) * (x + 3) * (x - 4) *(x - 2)
Substitute 1 for a
y(x) = (x + 3)²(x - 4)(x - 2)
Hence, the factored form of the polynomial function is y(x) = (x + 3)²(x - 4)(x - 2)
Read more about polynomials at:
brainly.com/question/4142886
#SPJ1
Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18
Answer:
Each of the other cats have 45 whiskers on average.
Step-by-step explanation:
Let x represent the average number of whisker of each cat.
We have been given that there are 7 cats in my neighborhood, with an average of 41 whiskers each.
The total number of whiskers of six cats would be
.
Since one of the cats has 17 whiskers, so the total number of whiskers of 7 cats would be 
We will use average formula to solve our given problem.

Upon substituting our given values, we will get:

Let us solve for x.




Switch sides:



Therefore, the each of the other cats have 45 whiskers on average.
4 1/3 x 3 x 1 ¼
12 ¾ x 3 x 1 1/4
Your lucky that I just had the question on a test and realized you didn't make it into fractions.